COM 501 Advanced Datastructures and Algorithms Assignment-1

Note: All assignments involve a team of size 5 or 6. Due: 19/Jan

- 1. Given an integer array, write an algorithm to find max and second max. Calculate its step count. Express the step count (time complexity) interms of $O, \Omega, \theta, o, \omega$.
- 2. Write a recursive algorithm to compute n^{th} fibonacci number. Calculate its step count. Also bound the same using asymptotic all notation.
- 3. Write an algorithm to list all ternary strings. Calculate its step count. Also bound the same using asymptotic all notation.
- 4. Say True or False with a precise justification.
 - $3 2^n 4 3^n = \theta(2^n)$
 - $\frac{6}{n^2} + \frac{1}{n!} = \theta(1)$
- 5. For a problem P, there are six algorithms and their run-times are given below. Order them by Asymptotic Growth.
 - (a) $A_1(n) = 5$
 - (b) $A_2(n) = 2^{n \log n}$
 - (c) $A_3(n) = n^{100}$
 - (d) $A_4(n) = n^n$
 - (e) $A_5(n) = n!$
 - (f) $A_6(n) = (0.5)^{\log_2 n}$

6. In each of the following situations, indicate whether f = O(g) or $f = \Omega(g)$ or both (in which case $f = \theta(g)$

	f(n)	g(n)
(a)	n-100	n-200
(b)	$100n + \log n$	$n + (logn)^2$
(c)	log 2n	log 3n
(d)	$n^{1.01}$	$nlog^2n$
(e)	$n2^n$	3^n
(f)	n!	2^n