
Indian Institute of Information Technology
Design and Manufacturing, Kancheepuram

Chennai 600 127, India
An Autonomous Institute under MHRD, Govt of India

http://www.iiitdm.ac.in
COM 501 Advanced Data Structures and Algorithms

Instructor
N.Sadagopan

Scribe:
Nitin Vivek Bharti

Renjith.P

Binomial Heap

Objective: In this lecture we discuss binomial heap, basic operations on a binomial heap such as insert,
delete, extract-min, merge and decrease key followed by their asymptotic analysis, and also the relation of
binomial heap with binomial co-efficients.

Motivation: Is there a data structure that supports operations insert, delete, extract-min, merge and
decrease key efficiently. Classical min-heap incurs O(n) for merge and O(log n) for the rest of the operations.
Is it possible to perform merge in O(log n) time.

1 Binomial Tree

We shall begin our discussion with binomial trees. Further, we study structural properties of binomial trees
in detail and its relation to binomial heaps. Binomial tree is recursively defined as follows;

1. A single node is a binomial tree, which is denoted as B0

2. The binomial tree Bk consists of two binomial trees Bk−1, k ≥ 1.

3. Since we work with min binomial trees, when two Bk−1’s are combined to get one Bk, the Bk−1 having
minimum value at the root will be the root of Bk, the other Bk−1 will become the child node.

Eg:

5 -1

10

2

5

7

6

B0 B1 B2

Structural Properties:

For the binomial tree Bk,

1. There are 2k nodes.

2. The height of the binomial tree is k.

3. There are exactly
(
k
i

)
nodes at depth i = 0, 1, . . . , k.

4. The root has degree k, which is greater than that of any other node, moreover if the children of the
root are numbered from left to right by k − 1, k − 2, . . . , 0, child i is the root of the subtree Bi.

Note: Due to Property 3, it gets the name binomial tree (heap).
Eg: [

5 -1 3 5 7 8 9
]

5 -1 → -1

5

Two B0’s are merged to get a B1.

-1

5

3 Insert 3 into B1, we get one B1 and a B0.

Insert 5, -1

5

3 5, on merging two B0’s → -1

5

3

5

, on merging two B1’s → -1

3

5

5

Insert 7, and 8. -1

3

5

5

7 8, on merging two B0’s → -1

3

5

5

7

8

, Insert 9, -1

3

5

5

7

8

9

Binomial Tree Construction

Proof of Property 1: Mathematical induction on k. The binomial tree B0 is the base binomial tree for
k = 0. Clearly, by definition, B0 is a single node. Consider a binomial tree Bk, k ≥ 1. Since Bk is constructed
using two copies of Bk−1, by the hypothesis, each Bk−1 has 2k−1 nodes. Thus, Bk has 2k−1 + 2k−1 = 2k

nodes. Hence the claim.

Proof of Property 2: Mathematical induction on k. Clearly, B0 has height ’0’. By the hypothesis,
Bk−1 has height k − 1. For Bk, one of the Bk−1’s becomes the root and hence the height increases by one
when the other Bk−1 is attached. Thus, the height of Bk is k − 1 + 1 = k.

Proof of Property 3: Let D(k, i) be the number of nodes at depth i for a binomial tree of degree
k. Since Bk is constructed using two copies of Bk−1, the nodes at depth (i− 1) of Bk−1 becomes the nodes
at depth i for Bk. Therefore,

D(k, i) = D(k − 1, i) + D(k − 1, i− 1);

= k−1Ci + k−1Ci−1;

=
(k − 1)!

i!(k − 1− i)!
+

(k − 1)!

(i− 1)!(k − 1− i + 1)!
;

=
(k − 1)!

(k − i− 1)!(i− 1)!

[
1

i
+

1

k − i

]
;

=
k!

i!(k − i)!
;

= kCi

Proof of Property 4: Follows from the recursive definition of Bk.

2

2 Binomial Heap

In this section, we shall discuss the construction of min binomial heap, time-complexity analysis, and various
operations that can be performed on a binomial heap along with its analysis.
A Min Binomial Heap H is a collection of distinct min binomial trees. For each k ≥ 0, there is at most
one min binomial tree in H whose root has degree k.

Observation 1: An n-node min binomial heap consists of at most blog nc+ 1 binomial trees.

Observation 2: A binomial heap on n nodes and a binary representation of n has a relation. Bi-
nary representation of n requires blog nc + 1 bits. Adding a node into a binomial heap H is equivalent to
adding a binary ’1’ to the binary representation of H.

We now present an example illustrating the construction of binomial heap and its relation to binary repre-
sentation. For Bi, the value given in parenthesis is the binary representation of the number of nodes (n = 2i)
in Bi.

[
− 1 5 7 8 2 8 100 1

]

-1 5

B0(1) B0(1)
→

-1

5

7 8

B0 + B0 =

1
1

1 0
B1

B0(1) B0(1)

→

-1

5

7

8

B1(10) B1(10)

→

-1

7

8

5

1 0
1 0

1 0 0
B2

-1

7

8

5

2 8

B2(100) B0(1) B0(1)

-1

7

8

5

2

8

B2(100) B1(10)
n = B2 + B1 100 + 10 = 110

-1

7

8

5

2

8

1

B2 B1 B0

n = B2 + B1 + B0 100 + 10 + 1 =111

→

-1

7

8

5

1

2

8

100

B2 B2

→

-1

1

2

10

100

7

8

5

1 0 0
1 0 0

1 0 0 0

B3

3

Note:

• In the above example, for n = 8, the final binomial heap has B3 = 1 and B2 = B1 = B0 = 0 which is
1 0 0 0, the binary representation of 8.

• For n = 17, the binomial heap consists of one B4 and B0, which corresponds to the binary representation
of 1 0 0 0 1.

Insertion

Inserting a node into a binomial heap H is equivalent to adding a binary ’1’ to the binary representation of
H. In the worst case, the newly inserted node B0 triggers merge at each iteration, i.e., inserting B0 creates
a new B1 which inturn creates a new B2 and so on. Thus, insert requires O(log n) operations.

Merge

Merging two binomial heaps H1 and H2 is equivalent to adding two binary numbers. In particular, adding
the binary representation of |H1| and |H2|. In the worst case, every bit addition generates a carry which is
equivalent to creating a new Bi while merging a copy of Bi−1 in H1 and a copy of Bi−1 in H2. Thus, merge
incurs O(log n) in the worst case, where n = |H1|+ |H2|. An example is illustrated below:

Binomial heap H1 Binomial heap H2

-5

3

4

2

7

10

1

B2 B1 B0

-7

-1

3

7

4

2

3

1

10

12

1

B3 B1 B0

1. If B0 is present in one of the heaps, then do nothing. Otherwise, merge two copies of B0 and create
one B1. In general, merge two copies of Bi and create a copy of Bi+1.

1 1 7

10

10

12

-5

3

4

2

-7

-1

3

7

4

2

3

1

B0 B0 B1 B1 B2 B3

↓

1

1

7

10

10

12

-5

3

4

2

-7

-1

3

7

4

2

3

1

B1 B1 B1 B2 B3

4

2. On merging we may get three copies of B1, leave the first B1 and merge the last two to obtain one B2.

1

1

7

10

12

10

-5

3

4

2

-7

-1

3

7

4

2

3

1

B1 B2 B2 B3

3. Now, two B2 exists. Whenever, more than two copies of Bi exists, leave the first one and merge the last
two.

1

1

-5

7

10

12

10

3

4

2

-7

-1

3

7

4

2

3

1

B1 B3 B3

4. Now, merge two B3.

1

1

-7

-5

7

10

12

10

3

4

2

-1

3

7

4

2

3

1

B0 B4

There are 18 nodes, binary representation =
1 0 0 1 0
B4 B3 B2 B1 B0

Extract Min

Let Bk be the node containing the minimum of a binomial heap H. By construction, Bk contains Bk−1, . . . , B0

as its children. On extracting minimum, we invoke Merge() routine with H1 being Bk−1, . . . , B0 and H2

being the remaining nodes in H (except Bk). Thus, extract minimum incurs O(log n) in the worst case.
Suppose, we perform extract min on the above 18-node binomial heap, we get
After extracting −7 ,

1

1

-5

7

10

12

10

3

4

2

-1

3

7

4

2

3

1

B1 B3 B2 B1 B0

Now we perform merge on the above binomial heap so that each Bi occurs at most once.

5

Decrease Key

For decrease key, the value of the node pointed by the pointer x is decreased to the desired value y. If y
is smaller than its parent, i.e., on performing decrease key min binomial heap property is still maintained,
then no further modification is required. Otherwise, min-heapify() routine is called to set right the min-heap
property. Since the height of the binomial heap is k = log n, the decrease key in worst case takes O(log n)
comparisons.

Delete

To perform delete we make use decrease key and extract min subroutines. The node to be deleted is decreased
to −∞ (or choose a value which is smaller than the current minimum), followed by extract min. Clearly,
this incurs O(log n).

Summary

In this lecture, we have discussed in detail a variant of min-heap, namely, min binomial heap using which
one can perform the following operations efficiently.

• Insert and extract min can be done in O(log n) time.

• Merging of two heaps can be done in O(log n) in worst case, whereas classical heap incurs O(n).

• Decrease key and delete can be performed in O(log n) time.

Acknowledgements: Lecture contents presented in this module and subsequent modules are based on the
text books mentioned at the reference and most importantly, author has greatly learnt from lectures by
algorithm exponents affiliated to IIT Madras/IMSc; Prof C. Pandu Rangan, Prof N.S.Narayanaswamy, Prof
Venkatesh Raman, and Prof Anurag Mittal. Author sincerely acknowledges all of them. Special thanks to
Teaching Assistants Mr.Renjith.P and Ms.Dhanalakshmi.S for their sincere and dedicated effort and making
this scribe possible. Author has benefited a lot by teaching this course to senior undergraduate students
and junior undergraduate students who have also contributed to this scribe in many ways. Author sincerely
thank all of them.

References:
1. E.Horowitz, S.Sahni, S.Rajasekaran, Fundamentals of Computer Algorithms, Galgotia Publications.
2. T.H. Cormen, C.E. Leiserson, R.L.Rivest, C.Stein, Introduction to Algorithms, PHI.
3. Sara Baase, A.V.Gelder, Computer Algorithms, Pearson.
4. S.Sahni, Handbook of Data Structures.

6

