
Indian Institute of Information Technology
Design and Manufacturing, Kancheepuram

Chennai 600 127, India
An Autonomous Institute under MHRD, Govt of India

http://www.iiitdm.ac.in
COM 501 Advanced Data Structures and Algorithms

Instructor
N.Sadagopan

The Turing Machine and Computational Complexity

The science in Computer Science focuses on the systematic study of algorithms along with their formal
properties. As an outcome, this study classifies the set of computational problems into solvable problems;
those that have algorithms, and unsolvable problems; problems for which no algorithm exists.

Discussion on formal properties include Mathematical Model, Input Representation (Encoding), Input
Size, expected output with/without an objective function and run-time analysis as a function of the input
size.

Mathematical Model is an abstract representation of a system under study. Models help in classifying
the set of computational problems (which is an uncountable set) into a ’nice’ set of equivalence classes.
Often, models do not focus on a particular problem like sorting, searching, etc. Instead, it looks at the set
of problems in a larger perspective and bring them under different umbrellas. For example, problems such
as sorting, travelling salesman tour, coloring are classified as permutation problems. Since the solution
we look for is a permutation (arrangement) of the input set. Similarly, searching and primality testing are
classified as decision problems, and problems such as vertex cover, feedback vertex set fall into subset

problems. Enumeration problems include: listing all onto functions, listing all spanning trees, etc. Essen-
tially, models focus on the behavior of algorithms associated with problems and group those having a good
similarity. Both vertex cover and feedback vertex set look for a subset satisfying some property. For both
the problems, except the property testing phase, the identification of subsets (behavior) is same.

Needless to say, each model has its own merits, demerits and limitations. To overcome limitations of one
model, various other models have been proposed in the literature. Commonly used models in the study of
computing are

1. Finite Automata: Used to model decision problems. Membership testing (Is x ∈ L) and pattern
matching (Is pattern ’text’ present in a file) are common problems falling into this category. Since the
model does not have memory to remember state information, questions such as whether a program has
equal number of left and right curly braces cannot be verified.

2. Pushdown Automata: Variant of Finite Automata (FA) with a memory to remember state informa-
tion. Membership testing with specific properties such as ’palindrome’, ’matching parenthesis’ can be
modeled using PDA. However, computational problems such as a+b, 2n cannot be modeled using PDA.

3. Turing Machine: Superior to PDA and hence, works as an accepting as well as computing device.
Used to model all solvable computational problems. The TM can even model ’subroutine’ and ’param-
eter passing’. Moreover, every valid program with finite termination conditions has a TM as its model.

4. RAM Model: Random Access Memory model is similar to the Turing machine on both computability
and complexity aspects. The behavior of this model is close to the modern day computers.

Note: Models focus on implementation aspect of an algorithm and it plays a vital role in determining the
complexity of the problem in hand. Further, input representation for each model is different, an appropriate



encoding of the input is must before using a model to solve a problem.

How are inputs represented ? Input representation is crucial in understanding the model with re-
spect to a specific problem. Turing machine follows the unary representation. I.e., to represent the integer
’5’, we use ’1 1 1 1 1’. RAM model uses binary representation and hence, computers use the binary repre-
sentation to interact with its hardware. High-level programming languages follow decimal (base 10) number
system for input representation.

Turing Machine

In this lecture, we shall discuss TM from the perspective of ’machine as an acceptor’ and ’machine as a
computing device’. A Turing machine (TM) consists of an input tape (to represent inputs) and a read/write
head (a control unit) using which the tape symbols can be read/written. The input tape is divided into cells
and each cell can contain exactly one symbol from a fixed alphabet {0, 1, $}, where ’0’ and ’1’ are used to
describe the input and $ is a delimiter to mark the end of the tape.

The moves of the TM are described using transition identifiers (IDs). The ID δ(q0, 1) = (q1, A,R) describes
that on reading the input ’1’ at the state q0, the control switches to the state q1 by writing the symbol ’A’
in place of ’1’. Further, the read/write head moves exactly one cell right. Similarly, δ(q0, 1) = (q0, 1, L) says
that on reading ’1’ at q0, the read/write head alone is shifted one cell left without changing the state and
the tape symbol. The move δ(q0, $) = (q0, $, H) says on reading $ at q0, halt the Turing machine.

We shall now describe the transition function for the language L = {an bn}. Note that TM description
naturally yields an algorithm and hence, the description must be sound and complete. I.e., all valid inputs
must be accepted and every invalid input must be rejected by the corresponding TM.

Problem 1: L = {an bn}.

Transition Function:
δ(q0, a) = (q1, A,R)
δ(q1, a) = (q1, a, R) δ(q1, B) = (q1, B,R)
δ(q1, b) = (q2, B, L) δ(q1, $) = (qrej , $, H)
δ(q2, B) = (q2, B, L)
δ(q2, a) = (q2, a, L)
δ(q2, A) = (q0, A,R)
δ(q0, B) = (q3, B,R)
δ(q0, b) = (qrej , b,H)

δ(q3, B) = (q3, B,R)
δ(q3, a) = (qrej , a,H)
δ(q3, b) = (qrej , b,H)
δ(q3, $) = (qacc, $, H)

Remarks:
1. For all valid inputs such as aabb, aaaabbbb, the control starting from q0, after a sequence of moves halts
at qacc.
2. For invalid inputs with more a’s such as aaabb, aaaa, the control stops at q1 when it exhausts a’s and it
reads $. Subsequently, the TM halts at qrej .
3. For invalid inputs with more b’s such as bbbb, aabbb, the control is either in q0 or q3. Further, on reading
’b’, the TM stops at qrej .

In the above example, the TM behaves like an acceptor. Accept all strings x ∈ L and stop the machine
at qacc, and reject all strings x /∈ L and stop the machine at qrej . We next discuss TM as a computing device.

2



Problem 2: Input: m,n in unary, Output: m+ n in unary.

Transition Function:
δ(q0, 1) = (q0, 1, R)
δ(q0, 0) = (q0, 1, R)
δ(q0, $) = (q1, 1, L)
δ(q1, 1) = (q1, 0, H)

For the input m = 3, n = 2, the tape initially contains

1 1 1 0 1 1 $

Starting from q0, after three moves, the read/write head reads ’0’ and changes the it to ’1’. At this point
of time, the tape contains m + n + 1 in unary. To get m + n; after two more moves, when the control
sees $, it moves left and changes the right most ’1’ to ’0’, and halts the machine. Thus, we get the unary
representation of m+ n.

Time complexity: To discuss the time complexity, we need to fix the primitive operation, an opera-
tion which is done frequently. Further, the time complexity is expressed as a function of the number of
primitive operations. As far as TM is concerned, the operations involved are (i) movement of the tape to
left/right (ii) changing the tape symbol. For most of the problems, the movement of R/W head dominates
the time complexity as it is frequently performed over the other. We now analyze the number of R/W head
movements for m+ n.

Input size: m + n + 1 + 1 = m + n + 2; m + n for the unary representation of m and n, and the
additional two 1’s are for delimiter ’0’ and the end symbol ’$’.

R/W head movements: m − 1 + 1 + n + 1 + 1 = m + n + 2. As per the above construction, to scan all
m 1’s, there are m − 1 R/W moves, one move to read ’0’, n moves to scan all n 1’s, followed by one move
to read the end symbol $. Further, TM moves left and changes the last ’1’ to ’0’. Note that, the number
of R/W head movements is linear in the input size (m+n+2). The above approach runs in polynomial time.

Problem 2: Input: a, b in unary, Output: a− b in unary.

Transition Function:
The function returns a− b if a ≥ b and stop the machine at q7. Otherwise, it stops the machine at q8.

δ(q0, 1) = (q1, 2, R)
δ(q1, 1) = (q1, 1, R)
δ(q1, 0) = (q2, 0, R)
δ(q2, 2) = (q2, 2, R) δ(q2, 1) = (q4, 2, L)
δ(q4, 2) = (q4, 2, L)
δ(q4, 0) = (q3, 0, L)
δ(q3, 1) = (q3, 1, L)
δ(q3, 2) = (q0, 2, R)
δ(q2,$) = (q5,$, L)
δ(q5, 2) = (q5, 2, L)
δ(q5, 0) = (q6, 0, L)
δ(q6, 1) = (q6, 1, L)
δ(q6, 2) = (q7, 1, H)
δ(q0, 0) = (q8, 0, H)

Note that for a > b, the number of R/W head movements is

3



(b+ 1)(a+ 1) + b(a+ 2) + (a+ 1). In asymptotic sense, this is O(ab) = O(a2)
For a ≤ b
a(a+ 1) + a(a+ 2) = O(a2)
Note that the input size is a+ b+ 2 = O(a). Therefore, the number of R/W moves for a− b is polynomial
in the input size.

Problem 3: Input: Array A of n numbers in unary, Output: Sorted array of A.

Approach in Unary Representation: Note that to sort (3, 2, 1, 4), the input representation in the unary
representation is

1110110101111$

To sort; in the first iteration, we find the minimum of A by comparing A[1] with the rest of A; in the second
iteration, we find the second minimum of A, and so on. It is important to note that the comparison of two
numbers is performed using a − b subroutine as comparison cannot be done directly in Turing machines.
Using a− b routine, we declare a > b if 1’s are present in the result to the left of ’0’ (’0’ acts as a delimiter
for a and b) and a < b if 1’s are present in the result to the right of ’0’. Further, the computation a− b can
be done using an additional tape.

During the first iteration, A[1] is compared with the rest of A by invoking a − b routine n − 1 times,
and the cost for each invoke is O(a2). The minimum obtained as a result of this iteration is written onto the
output tape. Similarly, by incurring O(a2) effort for (n − 2) times, the second minimum is found. Overall,
there are O(n2) comparisons and each comparison incurs O(a2) effort due to a− b routine. Thus, the time
complexity of sorting is O(n2a2). Is this polynomial in the input size ?

Input Size: To represent, (a1, . . . , an) in the unary representation, the number of bits required is x =
a1 + a2 + . . .+ an + (n− 1) + 1. Note that (n− 1) in the sum corresponds to (n− 1) 0’s used as delimiters
and the last one is for the end symbol $. Let a = max(a1, . . . , an), then the input size x ≤ n ·a+n = O(na).
Also, note that x ≤ 2na ≤ x2. This inequality is used in the run-time analysis while analysing problems
such as sorting, search, etc. to say that the analysis is a polynomial function of the input size.
Since the sorting algorithm runs in O(n2a2) = O((na)2), it can be rewritten as O((x2)2) = O(x4), which is
polynomial in the input size x. Note that we need an upper bound to bound na in O((na)2) as a function of x.

Approach in Binary Representation: In case of a binary representation, we work with Random Access
Memory (RAM) model wherein we have a sequence of cells (random access memory) with the property that
any cell can be accessed in constant time. Further, the addition, subtraction and comparison can be done
using digital circuits at bit level in O(log n) time, where blog nc + 1 = O(log n) is the number of bits re-
quired to represent a number n in the binary representation. Each cell can hold an integer in its binary form.

Input size: For the sorting problem, the input size to represent (a1, . . . , an) is blog a1c+1+. . .+blog anc+1 =
O(n log a), where a = max(a1, . . . , an).
Analysis of sorting: As discussed earlier, there areO(n2) comparisons and each comparison incursO(log a).
Thus, the time complexity is O(n2 log a) which is polynomial in the input size.

Approach in Decimal Representation: Decimal representation follows RAM model with step count
analysis approach for analysing the time complexity. That is, for sorting problem, the input size is n which
is the number of elements in A and the time for comparing two elements is O(1). Since there are O(n2)
comparisons, the time for sorting is O(n2)×O(1) = O(n2) which is a polynomial in the input size.

Problem 4: Input: Integer n, Output: Factorial of n, n!.

Approach in unary: The unary representation follows the Turing machine model. Factorial of n is
computed as a sequence of multiplications; n × (n − 1) × . . . × 1. Further, the multiplication is modelled

4



using another Turing machine which does repeated additions.
Time to perform a+ b in unary: O(a+ b) = O(a) assuming a ≥ b.

Time to perform ab in unary: The addition routine will be called b times. The first time, the addi-
tion routine returns a+ a, the second time it returns a+ a+ a, and finally it returns ab. The overall cost is
O(ab).

Time to perform n!: During Iteration 1, we perform n×(n−1) for which the cost is O(n(n−1)). Iteration
2 incurs, O(n(n−1)(n−2)). After n iterations, we obtain n! on the output tape in unary form after incurring
O(n(n− 1)(n− 1) . . . 2 · 1) head movements. Thus, the factorial can be output after O(n!) head moves which
is exponential in the input size.

Approach in binary: The input n is represented in binary using O(log n) bits. Addition and multi-
plication of two numbers is performed using digital circuits at bit level. Addition of two numbers m and n
(assuming n ≥ m) can be performed in O(log n) bits. The multiplication of two numbers with O(log n) bits
each incurs the following costs.
(a) Each bit of n is multiplied with each bit of m incurring O(log n)×O(log n) = O((log n)2) costs.
(b) The partial products must be added to get the final sum. The number of columns in the partial product
is 2 log n and each column is of size at most log n. Thus, addition cost is 2 log n× log n = O((log n)2).
(c) The overall cost of the multiplication routine for two numbers is O((log n)2).
As part of factorial, the multiplication routine is called n times, and therefore, the time complexity of n! is
O(n · (log n)2).
Since the input size isO(log n), the time complexity when expressed as a function of input size isO(2logn(log n)2),
which is exponential in the input size.

Approach in Decimal: The classical recursive or iterative algorithm takes O(n) steps to output n!. It
is important to note that n in O(n) does not refer to the input size, instead, it refers to the magnitude.
Therefore, the run-time is polynomial in the magnitude.

Problem 5: Input: Integer n, Output: Check n is prime or not.
Approach in unary: Under unary representation, the approach is to check whether 2 is factor of n, 3 is a
factor of n and so on. We shall now explain how this division by 2, division by 3 is performed in the Turing
machine.
Division by 2: To check whether a number n is divisible by 2, encode n 1’s in the input tape. Start moving
the read/write head one cell right and for every second ’1’ in the tape, write ’2’ in the tape in place of ’1’.
At the end of this procedure, if we see no 1’s in the tape after the last ’2’, then the number is divisible by 2
and 2 is factor. Otherwise, 2 is not a factor. The cost for this operation is O(n) head moves.

Division by 3: Similar to division by 2, for three 1’s, we mark ’3’ in the input tape in place of the
third ’1’, and at the end if there are no 1’s, then n is divisible by 3. Otherwise, 3 is not a factor.
We continue the above procedure for values 4,5, until n − 1. If the division procedure returns ’NO’ for all
division routines, then the number is a prime. The overall cost of this approach is n×O(n) = O(n2). Thus,
primality checking is polynomial time solvable when the input is represented in unary.

Approach in binary: Note that the division checking is performed using repeated subtractions. To
check whether ’2’ is a factor, we subtract ’2’ from n repeatedly (n

2 iterations). The cost of the subtraction
is n

2O(log n). Thus, the run-time for factor checking is n
2O(log n) + n

3O(log n) + . . . + n
n−1O(log n). On

simplifying, we get O(n log n log n) = O(2logn log n log n), exponential in the input size.

Approach in Decimal: A simple for loop for n iterations checks all factors in the range 2 to n by in-
curring O(n) effort. This approach runs in time polynomial in the magnitude.

We shall summarize our discussion in the following table. ’Poly’ refers to polynomial in the input size.

5



’Exp’ refers to exponential in the input size. Decimal with constraints fixes a bound on the size of the
maximum integer and due to which, the step count analysis assumes, the basic arithmetic operations such
as addition, subtraction and multiplication can be done in O(1) time. However, decimal with no constraints
has no bound on the size of the integer and hence, the basic arithmetic operation cost varies based on the
input size. For decimal with no constraints, the input size is O(log10 n) and therefore, the cost of addition
is O(log10 n) and multiplication is O((log10 n)2).

Problem Unary representa-
tion

Binary Base 10 (Decimal)
with no constraints

Decimal with con-
straints

Addition(a, b) Poly: O(a) Poly: O(log2 a) Poly: O(log10 a) Poly: O(1)
Multiplication(a, b) Poly: O(ab) Poly: O((log2 a)2) Poly: O((log10 a)2) Poly: O(1)
Sorting Poly Poly Poly Poly
Factorial Exp Exp Exp Poly in magnitude
Primality checking Poly Exp Exp Poly in magnitude

Question: Consider a problem P with input size n. P has O(nk), k:fixed integer, algorithm in decimal
representation. What would be the complexity of P in base-2 and unary representations. Would P take
EXP time in unary representation.

Answer: Since P has O(nk) solution in decimal representation. It is clear that the space occupied by
P to store the input and other intermediate results is O(nl) for some fixed integer l. This is true, because,
if the underlying space used is exponential in the input size, then the overall time complexity is at least
exponential in the input size as the algorithm must spend O(1) at each of exponential locations. Also, the
underlying computations of P may involve basic arithmetic/algebraic operations incurring O(1) effort or it
may invoke another subroutine polynomial number of times with each call to the subroutine incurs some
polynomial time.

When we analyze P in base-2 representation, the cost of basic arithmetic/algebraic operations must be
expressed as a function of the input size (O(n log2 n)). Since, we know that basic operations are polynomial
in the input size for base-2 representation, P runs in polynomial in the input size under base-2 representation
as well. I.e., the number of operations of P times the cost of each operation. Since both are polynomial in
O(n log2 n), our claim is true. It is important to recall that both decimal and base-2 work with RAM model
for accessing and manipulating the inputs.

Under unary representation, the input size is the sum of the values of individual elements in the input.
Note that basic arithmetic operations can be performed in O(al), where l is a fixed integer and a is the
maximum of n numbers. Further, in RAM model, accessing an arbitrary location is O(1), however, in unary
representation it is polynomial in the input size as the read/write head can move exactly one cell at a time.
Since P performs polynomial number of basic operations and accesses the memory polynomial number of
times, both these tasks still incur polynomial effort under unary representation. It is important to highlight
that the degree of the polynomial increases when we move from decimal to base-2 to base-1. Thus, P has
polynomial-time solution in all three representations, polynomial in the input size.

6


