
Indian Institute of Information Technology
Design and Manufacturing, Kancheepuram

Chennai 600 127, India
An Autonomous Institute under MHRD, Govt of India

An Institute of National Importance

www.iiitdm.ac.in
COM302T Computer Networks-Lecture Notes

Instructor
N.Sadagopan
Scribe:
P.Renjith

Flow Control

Objective: In this lecture, we shall present flow control mechanisms using which one can syn-
chronize a fast sender and a slow receiver. We shall be discussing stop and wait and sliding
window protocols, and their performance analysis.

Introduction: In earlier lectures, we have discussed network topologies using which one can
interface two or more systems. Subsequently, we looked at encoding schemes using which we
have learnt how to convert bits into signals. Further, a signal, on travel may get corrupted due
to transmission medium and to handle such scenarios, error detection and correction schemes
were discussed in detail. Having seen rudimentary concepts required for data transmission, it
is now natural to ask: how do synchronize the sender and receiver. What if the network speed
of the sender is 1000Mbps and the receiver is 500Mbps ? Should we employ a retransmission
policy if in case the receiver detects an error in the file sent by the sender or should we go
for multiple bit error detection and correction scheme ? If retransmission is the order of the
day, then what would be the expected number of retransmissions ? We shall investigate these
questions in detail and learning outcomes from this study will help us to identify a suitable flow
control design.

Stop and Wait Protocol

Consider a scenario where the sender wishes to transmit a file of size 1MB. As per this protocol,
the given file is split into frames (a small group of bytes) of size 64 bytes. For each frame, CRC
computation is done at the server before transmission. Similarly, on receiving the frame, the
receiver does CRC check to ascertain whether there is an error in transmission. This process
would be done for a total of 214 frames. During this process, some of the frames may require
retransmissions. If the frame received is in error which is detected by CRC, then the receiver
sends NACK to the sender. If the frame received is without error, then the receiver sends ACK
to the sender. We shall explain the behaviour of stop and wait protocol in detail, and highlight
the issues involved while the frame is in transmission.
Strategy 1 The protocol behaviour is given as follows; (i) transmit a frame and wait for an
acknowledgement from the receiver. (ii) if the acknowlegement is positive, then transmit the
next frame. (iii) Otherwise, retransmit the previous frame. At any point of time, exactly one
frame is in transmission. The sender and receiver can experience the following scenarios while
the frame or acknowledgement in transmission. Figure 1, illustrates all seven possible scenarios.

Sender 1. Frame sent is dropped along the way.
2. For each frame, after sending the frame, the sender maintains a timer within which it

expects a positive acknowledgement (ACK) and a negative acknowlegement (NACK).
The timer may expire (time out) and the sender may not see ACK or NACK within the
time out. i.e., ACK/NACK sent by the receiver drops along the way.

3. ACK/NACK reaches the sender late, i.e., delayed ACK or delayed NACK. This is also
considered as time out.

Receiver 1. Receiver is expecting a frame, but it does not see anything in the receiver buffer. Frame
sent by the sender is dropped along the way. Receiver sends a negative acknowledgement
and asks for a retransmission of the frame.

2. Receiver transmits ACK if there is no error in the frame received or transmits NACK if
there is an error in the frame received.

Time

Out

Time

Out

F0

ack

F1

ack

Time

Out

Time

Out

Time

Out

Time

Out

Time

Out

Time

Out

Time

Out

Time

Out

Time

Out

Time

Out

F0

ack

ack

F0

Time

Out

Time

Out

F0

ack

F1

nack

F0

F0

ack

F0

F0

ack

ack

F0

nack

ack

F0

F0

ack

F0

nack

ACK NACK
ACK DROPS

FRAME DROPS

NACK DROPS DELAYED NACKDELAYED ACK

Fig. 1. Stop and Wait - Possible Scenarios

Questions:
1. Will the above scheme work fine always ? Will the sender and receiver correctly interpret the
frames received ?
2. If ACK/NACK/Frame drops, will the sender and receiver synchronize correctly for the next
frame ?

Remarks:
1. In Figure 2 (fig a and fig b), we see that the frame F1 is never received by the receiver. The
sender is unaware of this scenario and continue to send subsequent frames. This synchronization
issue happens as there is no label attached with ACK/NACK. In Fig a of Figure 2, the delayed
ACK of the first F0 is considered by the sender as the ACK of the second F0 and due to which
the sender sends the next frame F1. This issue can be resolved if ACK signal from the receiver
contains the label of the frame that the receiver is expecting next from the sender.

2. Since the sender sends exactly one frame at a time, to send a sequence of frames: F0, F1, F2, F3, ...,
we can use a 1-bit label, thus the transmitting sequence would be F0, F1, F0, F1, F0, F1,
The third frame F0 corresponds to F2 and the fourth frame F1 corresponds to F3 and so on.

3. With the above modification, the modified snapshots of Fig a and Fig b is shown in Fig
c and Fig d, respectively. An example sequence is given in Fig e.

4. It is important to note that both the sender and receiver maintain a window of size one
in the stop and wait protocol. Sender clears the window and brings in the next frame when it
receives an acknowledgement from the receiver for the frame sent, and similarly, the receiver

2

clears the window when it receives the expected frame without error. Thus, at any time of the
protocol functioning, the number of outstanding frames is one.

5. Since ACKs are labeled and exactly one frame is in transmission, there is no need to la-
bel NACK. On seeing NACK, the sender knows that the previous frame sent is either dropped
or in error, and performs a retransmission of the frame. Moreover, the above scheme works fine
even if there is a label associated with NACK. That is, NACK 1 to the sender indicates that
the frame F1 sent before is in error and asks for a retransmission.

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out
Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

Time
Out

F0

Ack
F0

Ack

F1

F0

Fig a

F0

Ack1
F0

Ack1

F1

F0

Abort Transmission due to

inconsistency in frame transmission

Fig c

F0

Ack1
F0

Ack1

F1

Abort Transmission due to

inconsistency in frame transmission

Fig d

Ack
F0

Ack

F1

F0

Fig b

F0

Ack
F0

Ack

F1

F0

Fig a

Nack

Frame F1 is never received Frame F1 is never received

F0

Ack1
F1

Ack0

F0

Ack1

F0

Ack1

F1

F1

Nack1
F1

Ack0

F1

Ack0

F0

Nack1
F0

Fig c Fig d

Fig e

x Nack

Fig. 2. Stop and Wait - ACK with labels

Performance of Stop and Wait Protocol

We shall analyze the performance of stop and wait protocol and discuss possible directions for
improving the link utilization. Assuming there is no frame error/delayed ack/delayed nack, then

Utilization=
tftrans

total time
where total time = tftrans + tprop + tatrans + tprop + tproc. Note that tftrans and tatrans refer to the
transmission time of a frame and an acknowledgement, respectively. tprop denotes the propaga-
tion delay and tproc denotes the overhead computation time such as CRC computation at the

3

sender, CRC check at the receiver, the time to update the sender window, etc.

If the channel is noisy, then the frame may get corrupted during the transmission, and due
to which a frame may be retransmitted many times. The number of retransmissions is a ran-
dom variable which is modeled as a ’geometric random variable’. Similarly, frame drops/delayed
ACKs/delayed NACKs triggers time out and hence it is appropriate to look at the expected
number of time outs during a transmission which is again a geometric random variable. Let p
denote the probability that the frame is in error and q denote the probability of time out.

Let X be the random variable denoting the number of retransmissions of frames due to NACKs,
then

E(X) =
∑∞

i=1 i · pi−1 · (1− p).

i.e., a sequence of (i − 1) failure attempts followed a successful attempt. The first (i − 1) re-
transmissions of a frame results in error and the last transmission is without error.

E(X) = (1− p)(1 + 2p + 3p2 + . . .) = 1
1−p .

On the similar line, let Y be the random variable denoting the number of time outs, then

E(Y) =
∑∞

i=1 i · qi−1 · (1− q) = 1
1−q .

Thus, the utilization incorporating the above expected number is given as follows;

Utilization=
tftrans

total time + (E(X)) · (total time) + (E(Y)) · (total time)
.

Utilization=
tftrans

(total time) · (1 + 1
1−p + 1

1−q)

Observations:
1. From the above expressions, it is clear that to improve the utilization of stop and wait pro-
tocol, either the sender must transmit more frames instead of just one or must decrease tprop.
We shall now consider the former strategy and analyze its utilization.

2. Suppose, the sender window is increased to three, what should be the value of receiver
window size so that there is no synchronization issue. In such a scenario, how many outstanding
frames will be there in the transmission line and the receiver window.

3. When the receiver receives three frames, out of which, say the first frame and the third
frame are in error and the second frame is without error, how do we modify ACK/NACK to
implement this scenario.

4. For stop and wait, we have used 1-bit label, also known as sequence numbers. Can we still work
with sequence numbers {0, 1} to transmit three frames at a time. If this is not feasible, what
is the minimum number of sequence bits required to avoid synchronization issues/overlapping
of sender and receiver windows. By overlapping of window of frames, we mean, the labels used
by the sender and the receiver has some overlap, due to which misinterpretation of frames may
happen at the receiver.

4

Sliding Window Protocol - Generalization of Stop and Wait

We shall generalize stop and wait protocol by considering a flow control design with SWS = 4
and RWS = 1. Note that for stop and wait SWS = 1 and RWS = 1, and the number of
sequence bits is two (0 and 1). Let us consider the following four schemes.

1. Scheme 1: To transmit a sequence of 16 frames, we use two labels, {0, 1} alternately. i.e.,
F0, F1, F0, F1, F0, F1, Figure 3 shows that this scheme fails due to synchronization issue.
For the example given, the second frame F1 and the third frame F0 are dropped along the
way. The receiver accepts the fourth frame F1 thinking that it is actually the first F1.

. . .F1 F0 F1 F0 F1 F0

Ack 0

SWS = 4 RWS = 1F1 F0 F1 F0
x x

Fig. 3. Sliding Window protocol - Scheme 1

2. Scheme 2: To transmit a sequence of 16 frames, we use three labels, {0, 1, 2} cyclically. i.e.,
F0, F1, F2, F0, F1, F2, Figure 4 shows that this scheme also fails due to synchronization
issue. The first three frames are dropped during the transmission and the receiver is unaware
of this scenario. The receiver misinterprets the fourth frame as F0; accepts and generates
the acknowledgement signal as well.

. . .F2 F1 F0 F2 F1 F0

Ack 1

SWS = 4 RWS = 1
F0 F2 F1 F0

x x x

Fig. 4. Sliding Window protocol - Scheme 2

3. Scheme 3: To transmit a sequence of 16 frames, we use four labels, {0, 1, 2, 3} cyclically. i.e.,
F0, F1, F2, F3, F0, F1, F2, F3 Figure 5 shows that this scheme also fails due to synchro-
nization issue.

4. Scheme 4: To transmit a sequence of 16 frames, we use five labels, {0, 1, 2, 3, 4} cyclically.
i.e., F0, F1, F2, F3, F4, F0, F1, F2, F3, F4, Figure 6 shows that this scheme works fine and
no synchronization issue.

In Figure 7, an illustration is given for the design SWS=4,RWS=1 with sequence numbers
{0, 1, 2, 3, 4}, and SWS=3,RWS=1 with sequence numbers {0, 1, 2, 3}. It is important to high-
light that there is no overlapping of frames between the sender window and the receiver window

5

. . .F1 F0 F3 F2 F1 F0

Ack 0

SWS = 4 RWS = 1
F3 F2 F1 F0

F3 F2 F1 F0
Time out

Receiver accepts
interpreting F0 as F4,
F1 as F5 and so on.

Fig. 5. Sliding Window protocol - Scheme 3

. . .F0 F4 F3 F2 F1 F0

Ack 4

SWS = 4 RWS = 1
F3 F2 F1 F0

F2 F1 F0 F4

Fig. 6. Sliding Window protocol - Scheme 4

 F3 F2 F1 F0

Ack 4

SWS = 4 RWS = 1
F3 F2 F1 F0

F2 F1 F0 F4

. . .F0 F4 F3 F2 F1 F0 F4 F3 F2 F1 F0

 F3 F2 F1 F0
F3 F2 F1 F0

Nack 0

 F2 F1 F0 F4

F3

F4

F1

x

Nack 2

x

 F0 F4 F3 F2
F0 F4 F3 F2

X F1

F1
F0 F4 F3 F2

x

Nack 2

F0 F4 F3 F2

 F2 F1 F0

Ack 3

SWS = 3 RWS = 1
. . .F0 F3 F2 F1 F0 F3 F2 F1 F0

 F1 F0 F3

Nack 0

 F2 F1 F0

F2

F2

F3

x

Nack 0
x

F3

F1

x

 F2 F1 F0

 F2 F1 F0

 F1 F0 F3

Ack 3

 F2 F1 F0 F2 F1 F0

 F2 F1 F0
 F2 F1 F0

Nack 2

 F0 F3 F2
 F0 F3 F2

Sender Window Receiver Window Sender Window Receiver Window

Fig. 7. Sliding Window protocol: SWS=4,RWS=1 and SWS=3,RWS=1

6

in both cases. In the first case, SWS+RWS=5 which is same as the number of distinct sequence
numbers. In the other case, SWS+RWS=4 which is same as the number of distinct sequence
numbers.

Observations:
1. Scheme 4 works fine because there is no overlap between the sender window and receiver win-
dow. Since there are five distinct sequence labels and at any point of time, the sender contains
four distinct frames and the receiver window contains the largest indexed frame for which the
acknowledgement is sent.

2. Also, the design in which SWS = 3, RWS = 1, and sequence labels {0, 1, 2, 3} works without
any synchronization issues. This is true as there is no overlap between the sender window and
the receiver window.

3. In general, if SWS + RWS ≤ n, where n represents the number of distinct sequence
numbers, then there is no overlap between the sender window and the receiver, and hence the
protocol design works fine.

How Sliding Window works:

Consider a scheme with SWS = 4 and RWS = 1, and the frames to be sent are
F0, F1, F2, F3, F4, F0, F1, F2, F3, F4, At each iteration, the sender places a window of four
frames along the transmission link. As soon as the four frames reaches the receiver, say F0, F1, F2, F3,
the receiver performs CRC check on each of them.

(i) Suppose, F0 is delivered without error and F1 is in error, then the receiver sends NACK
1 indicating to the sender that F0 is perfect (positive acknowledgement for F0) and asks for a
retransmission of F1. The sender retransmits all frames starting from F1.

(ii) Since the receiver window is one, it can hold exactly one outstanding frame which is F0

in this case. Since F1 is in error, the receiver does not accept subsequent frames, namely F2, F3.

(iii) Whenever a frame Fi is in error, the receiver stops accepting frames starting from Fi+1

and sends NACK i, the sender retransmits Fi, Fi+1, The receiver stores the largest in-
dexed frame without error at the window, i.e., Fi−1. NACK i is a positive acknowledgement for
F0, F1, . . . , Fi−1 and a negative acknowledgement for Fi.

(iv) The scenario for delayed ack/delayed nack/ack drop/nack drop is similar to stop and wait.
Frame drop is similar to frame in error. Suppose in a sequence F0, F1, F2, . . .; F0, F1 reaches the
receiver with no error, whereas F2 is dropped along the way, then the receiver stores F1 at the
window and sends NACK 2.

(v) Although, this scheme improves the link utilization by sending more frames in each it-
eration, the overhead due to retransmission is high. In some cases, a frame without error may
be retransmitted unnecessarily. For example, Fi+1 may be without error and since Fi is in error,
Fi+1 is retransmitted unnecessarily until Fi is received with no error.

7

(vi) It is natural to ask, can we increase the receiver window size so that the number of out-
standing frames can be increased. For example, if the receiver window size is two, then for the
previous example, Fi+1 can be stored at the receiver and when Fi is received with no error, it
can be inserted at the appropriate location in the window.

(vii) Sliding window with RWS = 1 is called Go-back-n strategy in the literature, where n de-
notes the number of sequence numbers. The working principle of sliding window with RWS = 2
and RWS ≥ 3 is little different from Go-back-n strategy due to the presence of outstanding
frames. Sliding window with RWS ≥ 2 is known as selective-reject sliding window in the liter-
ature.

Working principle of selective-reject:

 F2 F1 F0

Nack 2

SWS = 3 RWS = 2

 F1 F0 F3

F1 F0

x x

Ack 0 x

 F2 F1 F0

 F2

Ack 3

 F3

 F2 F1 F0
 F2 F1 F0

Nack 0

Sender Window Receiver Window

 F1 F0 F3

 F2

 F2

x

Nack 3

F3 F2

F1

Ack 3

SWS = 3 RWS = 2
 F2 F1 F0

 F2 F1 F0

 F2 F1 F0
x Receiver is expecting

F3 F4 (F0 F1)
Receiver interprets
F0 as F4 thinking
that F3 is dropped.

Synchronization Issue

 F1 F0

Ack 2

SWS = 2 RWS = 2

F1 F0

Ack 0
x x

 F1 F0

F3 F2

Nack 2

 F2

 F1 F0
 F1 F0

Nack 0
 or
Ack 0

Sender Window Receiver Window

 F2

F3

F3 F2

Nack 2

F3 F2

F3 F2

 x

Ack 2

F0

 F0 F3 F2 F0 F3 F2

*
*

 F1 -

 F0 -

*

 x
Frame F1 is received without any error.

Frame F0 is received with error.

Fig. 8. Sliding Window Selective Reject protocol: SWS=3,RWS=2 and SWS=2,RWS=2

(a) Suppose the sender wishes to transmit F0, F1, F2, F3, F0, F1, F2, F3 . . . with SWS=3 and
RWS=2. Although, the sender sends three frames in each iteration, the receiver will only look
at the first two frames as the outstanding window capacity is two. Suppose, during the first
iteration, out of F0, F1, F2; F0 is in error and F1 is without error, then the receiver stores F1 in
the window and reserve the other cell in the window for F0. Further, the receiver sends NACK
0 to the sender indicating that F0 is in error. On seeing NACK 0, the sender transmits only
F0. Unlike, go-back-n strategy, in this scheme, the frame in error alone is retransmitted until it
reaches the receiver without error. When the receiver receives F0 without error, it generates a

8

cumulative acknowledgement ACK 2 indicating both F0 and F1 (which is already there in the
window) are without errors.

(b) It is important to note that the sender is unaware of whether F1 is in error or not un-
til it sees ACK 2. On seeing ACK 2, the sender sends the next set of frames; F2, F3, F0. If
suppose, both F2 and F3 are in error, then the receiver sends NACK 2. F0 will be discarded
by the receiver irrespective of whether it is a true frame or a corrupted frame. Two slots in
the receiver window are reserved for F2 and F3, and therefore, any other outstanding frames
beyond F3 will be discarded by the receiver.

(c) An illustration of sliding window selective-reject protocol is given in Figure 8. It is now
appropriate to analyze the number of sequence numbers used and whether there are any syn-
chronization issues. Note that when SWS=3 and RWS=2 the number of outstanding frames at
the sender is 3 and at the receiver is 2, and hence, their sum is more than the sequence number
labels which is {0, 1, 2, 3}. As per our previous observation, this creates a synchronization issue
which is illustrated in Figure 8. In the example given, the ACK sent by the receiver at the end of
the first iteration is a delayed ACK, however, the sender retransmits the first set of F0, F1, F2
after time out. Assuming F2 is dropped along the way, the receiver accepts F0 thinking that
F3 is dropped along the way and F0 is actually F4. This can be avoided if we reduce the sender
window size to two. An illustration for SWS=2 and RWS=2 is also shown in the figure. Here
again, the scheme works fine as SWS+RWS=4, which is the number of sequence bits.

How do we determine SWS and sequence numbers ?

(1) SWS is dictated by the delay bandwidth product as DB product gives the estimate of
the maximum number of bits along the transmission channel. For example, a 100Mbps link
with tprop = 10 micro sec can hold 100 × 106 × 10 × 10−6 = 1000 bits. If frame size is 100
bits, then the number of frames is 10. To improve the utilization, the sender has to keep the
transmission channel busy during tprop for which the sender is expected to send 10 frames in
each iteration.

(2) For a Go-back-n strategy, one can work with SWS = 10 and RWS = 1. Thus, there
will be 11 distinct frames, and to avoid overlapping of windows, we need 11 sequence numbers.

(3) For a selective reject strategy with SWS = 10 and RWS = 2, we need 12 sequence numbers.
To reduce retransmission overhead and to exploit the fact that SWS = 10, the receiver can set
the window size to 10. Thus, if SWS = RWS = 10, then the receiver can see 10 outstanding
frames, and to avoid overlapping of windows, we need 20 sequence numbers.

(4) We often work with RTT while computing DB product in place of tprop (which is RTT/2).
Since the sender typically waits for at least one RTT before it updates the window, it is appro-
priate to keep the sender busy until one RTT. In such a case, for the above scenario, the DB
product is 100 × 106 × 10 × 10−6 × 2 = 2000 bits. If frame size is 100 bits, then the number
of frames is 20. Thus, SWS=20. For Go-back-n strategy with SWS=20, RWS=1, the minimum
number of sequence numbers required to avoid synchronization issue is 21. For selective-reject
with SWS=20 and RWS=20, we need at least 40 sequence numbers to avoid synchroniza-
tion/overlapping issues.

(5) It is important to note that, having RWS > SWS will not have any impact on the pro-

9

tocol design, and hence, the behaviour of protocol for such schemes is same as RWS = SWS.
Thus, protocol with SWS=2 and RWS=7 is as good as working with SWS=2 and RWS=2.
In general, any protocol with RWS ≥ SWS and SWS + RWS ≤ n works fine without any
synchronization/overlapping of window issues, where n denotes the number of distinct sequence
numbers.

Utilization of Sliding Window Protocol

We shall analyze first the performance of Go-back-n protocol. Since Go-back-n strategy is simi-
lar to stop and wait, the analysis of this protocol is similar to stop and wait. The only difference
lies in computing the retransmission overhead. For noise-free channel, the utilization is given as
follows; assuming SWS = n− 1 and RWS = 1;

Utilization=
(n− 1)tftrans

total time
where total time = (n− 1)tftrans + tprop + tatrans + tprop + tproc. Note that tftrans and tatrans refer
to the transmission time of a frame and an acknowledgement, respectively. tprop denotes the
propagation delay and tproc denotes the overhead computation time.
If the transmission channel is a noisy channel, then we need to compute the expected number
of retransmissions to successfully transmit the entire sender window. Suppose, the window con-
tains F0, F1, . . . , Fn−1, we say the transmission is complete if all of F0, F1, . . . , Fn−1 are received
at the receiver. Note that each time, the sender sends a window of (n− 1) frames. For example,
during
Iteration 1, it is F0, F1, . . . , Fn−1

Iteration 2, it is F0, F1, . . . , Fn−1 again due to NACK 0
Iteration 3, it is F1, . . . , Fn−1, Fn due to NACK 1
Iteration 4, it is Fn−2, Fn−1, Fn, . . . due to NACK (n− 2)
Iteration 5, it is Fn+1, Fn+2, . . . due to NACK (n + 1). At this time the initial F0, . . . , Fn−1 has
reached the receiver safe.

Although, the frame sequence sent by the sender in each iteration is different depending on
ACK/NACK signal, the number of frames transmitted is always (n − 1). Suppose Iteration k
successfully transmits all of the first (n− 1) frames, then all other iterations starting from 2 to
k is considered as retransmissions. The number of retransmissions is a random variable which
is modeled using a geometric random variable. If p is the probability that a frame is in error,
then the expectation is 1

1−p . Similarly if q is the probability of time out, then the utilization is

Utilization=
(n− 1)tftrans

(total time) · (1 + 1
1−p + 1

1−q)

We shall now analyze the utilization of selective-reject sliding window protocol by considering
SWS=n − 2 and RWS=2. The objective is to successfully transmit F0, F1, . . . , Fn−3 to the re-
ceiver. Since the receiver can store a frame ahead of the corrupted frame, the analysis depends
on whether the frame ahead of the corrupted frame is in error or not.
Worst Case: Each frame in F0, F1, . . . , Fn−3 is in error. Thus, the receiver first generates
NACK 0 and waits until true F0 is reached. The number of such retransmissions of F0 is given
by 1

1−p as it is modeled using a geometric random variable. Similarly, for each of F2, . . . , Fn−3,
the number of retransmissions is 1

1−p . Therefore,

Utilization=
(n− 2)tftrans

X + Y + Z + W

10

Where X = (n− 2)tftrans + tprop + tatrans + tprop + tproc

Y = (n− 2) · (1
1−p − 1) · (tftrans + tprop + tatrans + tprop + tproc)

Z = (n− 2) · (1
1−q) · ((n− 2)tftrans + tprop + tatrans + tprop + tproc)

W = (n− 3)((n− 2)tftrans + tprop + tatrans + tprop + tproc)
Note: X denotes the overhead due to transmission of the first set of (n − 2) frames, Y and Z
denotes the overhead due to retransmissions and time out, respectively. Finally, W denotes the
overhead due to transmission of (n− 2) frames at the end of every unsuccessful attempt. That
is, after a sequence of NACK 0, when we get ACK 0 from the receiver, the sender updates the
window and sends the next (n− 2) frames. Similarly, after a sequence of NACK 1, when we get
ACK 2 from the receiver, the sender updates the window and sends the next (n − 2) frames.
This process happens for (n − 3) times for each of F1 to Fn−2. Note that in the expression Y
we subtract 1 from the expected number as the last retransmission transmits (n − 2) frames
which is counted as part of W . The expression Z counts the expected number of time outs that
happen due to frame drops whenever the sender sends a window of (n−2) frames. All other time
outs due to delayed ACK/NACK, etc. will be counted as part of Y . That is, after a sequence
of NACK 0, and when the sender sees a ACK 2, it sends the next set of (n − 2) frames, and
during this transmission the entire window may be dropped leading to time out scenario. This
may happen whenever the sender sends a window of (n− 2) frames after a sequence of NACKs.
For example,
Iteration 1; the sender sends F0, F1, . . . , Fn−3

Iteration 2; F0 is sent as it received NACK 0
... NACK 0 again.
... NACK 0 again.
The above sequence of NACKs is counted as part of Y .
Iteration 15; sends F1, . . . , Fn−2 on seeing ACK 1. The transmission time is counted as part of
W . However, during transmission, all of them can be dropped and due to which the sender times
out which triggers retransmission of F1, . . . , Fn−2 again. This may happen repeatedly which is
counted as part of Z.
Iteration 16; F1 is sent as it received NACK 1. Again, this expected number is counted by Y .

Best Case: In this case, every second frame is without error. For example, Iteration 1; the
sender sends F0, F1, . . . , Fn−3. F0 is in error and F1 is without error.
Iteration 2; F1 is stored at the receiver. Only F0 is sent by the sender as it received NACK 0
... NACK 0 again.
... NACK 0 again.
Iteration 10; After a sequence of NACK 0, the receiver sends ACK 2 as a cumulative acknowl-
edgement for F0 and F1. The sequence of NACKs is counted as part of Y .
Iteration 11; the sender sends F2, F3, . . . , Fn−1. Now, F3 is safe and F2 is in error. F3 is stored
at the receiver window and the receiver generates NACK 2. During this transmission, the entire
window of frames (F2, F3, . . . , Fn−1) may be dropped and time out happens which is counted
by Z. If there is no time out, then the time for F2, F3, . . . , Fn−1 is counted as part of W .

Since, the error is for every second frame, the above sequence happens for n−2
2 times. Therefore,

Utilization=
(n− 2)tftrans

X + Y + Z + W
Where X = (n− 2)tftrans + tprop + tatrans + tprop + tproc

Y = (n−2)
2 · (1

1−p − 1) · (tftrans + tprop + tatrans + tprop + tproc)

Z = (n−2)
2 · (1

1−q) · ((n− 2)tftrans + tprop + tatrans + tprop + tproc)

11

W = ((n−2)
2 − 1)((n− 2)tftrans + tprop + tatrans + tprop + tproc)

If receiver window size is k, then the receiver can hold k outstanding frames. Worst case happens
when every transmitted frame in F0, . . . , Fn−k is in error. The analysis of this case is similar
to the previous one. Note that, SWS = n − k and RWS = k so that the number of sequence
numbers used is n.

Utilization=
(n− k)tftrans

X + Y + Z + W
Where X = (n− k)tftrans + tprop + tatrans + tprop + tproc

Y = (n− k) · (1
1−p − 1) · (tftrans + tprop + tatrans + tprop + tproc)

Z = (n− k) · (1
1−q) · ((n− k)tftrans + tprop + tatrans + tprop + tproc)

W = (n− k − 1)((n− k)tftrans + tprop + tatrans + tprop + tproc)

For the best case, we need to consider the scenario in which every kth frame is corrupted
by the link and F0, . . . , Fk−1 are safe and it is stored in the receiver window.

Utilization=
(n− k)tftrans

X + Y + Z + W
Where X = (n− k)tftrans + tprop + tatrans + tprop + tproc

Y = (n−k)
k · (1

1−p − 1) · (tftrans + tprop + tatrans + tprop + tproc)

Z = (n−k)
k · (1

1−q) · ((n− k)tftrans + tprop + tatrans + tprop + tproc)

W = ((n−k)
k − 1)((n− k)tftrans + tprop + tatrans + tprop + tproc)

Summary:
In this lecture, we have addressed a fundamental question: how do we synchronize a fast sender
and a slow receiver ? In an attempt to answer this question, we first designed a basic protocol,
namely, stop and wait protocol using which the sender can send exactly one frame at a time
and must wait for an acknowledgement before transmiting the next frame. This scheme worked
fine and flow control objective is also met, however, the link utilization is poor as we used a
very small portion of DB product during the transmission. Subsequently, to increase the link
utilization, we considered sliding window protocol which sends a window of frames during each
iteration. While the window of frames in transmission, a part of the window may get corrupted
leading to a retransmission of the window or the frame in error. Accordingly, we designed two
sliding window protocols; Go-back-n and selective-reject. The utilization of each of the protocol
scheme is also analyzed in detail.

12

