COM Design and Analysis of Algorithms Assignment-1

Note: All assignments involve a team of size 5 or 6. Due: 18/Jan

- 1. Given an integer array, write an algorithm to find max and min. Calculate its step count. Express the step count (time complexity) interms of $O, \Omega, \theta, o, \omega$.
- 2. Write a recursive algorithm to search an element in an integer array. Calculate its step count. Express the step count (time complexity) interms of $O, \Omega, \theta, o, \omega$.
- 3. Algorithm A performs 10 n^2 basic operations, and algorithm B performs 300 log n basic operations. For what value of n does algorithm B start to show its better performance.
- 4. In each of the following situations, indicate whether f = O(g) or $f = \Omega(g)$ or both (in which case $f = \theta(g)$
- $\begin{array}{cccccccc} f(n) & g(n) \\ (a) & n-100 & n-200 \\ (b) & 100n + \log n & n + (logn)^2 \\ (c) & \log 2n & \log 3n \\ (d) & n^{1.01} & nlog^2n \\ (e) & n2^n & 3^n \\ (f) & n! & 2^n \end{array}$ 5. Arrange the following functions in order. 7, $\frac{1}{n^2}$, $2^{n.\log n}$, $4^{\log n}$, $n^{\log 7}$, n!, $(\frac{n}{e})^n$
- 6. For each of the above function, express the function (time complexity) using little-oh and little-omega.

7. Fill-in the following table with a tick if the asymptotic notation satisfies the property. Justify any three.

Notation	Reflectivity	Symmetric	Transitive	Antisymmetric
θ				
0				
Ω				
0				
ω				