COM Design and Analysis of Algorithms Assignment-1

Note: All assignments involve a team of size 5 or 6 . Due: $18 / \mathrm{Jan}$

1. Given an integer array, write an algorithm to find max and min. Calculate its step count. Express the step count (time complexity) interms of $O, \Omega, \theta, o, \omega$.
2. Write a recursive algorithm to search an element in an integer array. Calculate its step count. Express the step count (time complexity) interms of $O, \Omega, \theta, o, \omega$.
3. Algorithm A performs $10 n^{2}$ basic operations, and algorithm B performs $300 \log n$ basic operations. For what value of n does algorithm B start to show its better performance.
4. In each of the following situations, indicate whether $f=O(g)$ or $f=\Omega(g)$ or both (in which case $f=\theta(g)$

	$f(n)$
(a) $\mathrm{n}-100$	$g(n)$
(b) $100 \mathrm{n}+\log \mathrm{n}$	$\mathrm{n}-200$
(c) $\log 2 \mathrm{n}$	$\mathrm{n}+(\log n)^{2}$
(d) $n^{1.01}$	$\log 3 \mathrm{n}$
(e) $n 2^{n}$	$n \log ^{2} n$
(f) $n!$	3^{n}

5. Arrange the following functions in order. $7, \frac{1}{n^{2}}, 2^{n \cdot \log n}, 4^{\log n}, n^{\log 7}, n!,\left(\frac{n}{e}\right)^{n}$
6. For each of the above function, express the function (time complexity) using little-oh and little-omega.
7. Fill-in the following table with a tick if the asymptotic notation satisfies the property. Justify any three.

Notation	Reflectivity	Symmetric	Transitive	Antisymmetric
θ				
O				
Ω				
o				
ω				

