
Indian Institute of Information Technology
Design and Manufacturing, Kancheepuram

Chennai 600 127, India
An Autonomous Institute under MHRD, Govt of India

An Institute of National Importance
COM 501 Advanced Data Structures and Algorithms - Lecture Notes

Introduction to Algorithms and Asymptotic analysis

1 Algorithm: Design

An algorithm is a finite sequence of logically related instructions to solve a computational problem.
The following problems are well defined and are considered to be computational problems.

– Given an integer x, test whether x is prime or not.

– Given a program P , check whether P runs into an infinite loop.

Any algorithm must have an input provided by the user and must produce an output. Computa-
tional instructions in the algorithm must involve only basic algebraic (arithmetic) operations and it
should terminate after a finite number of steps. Finally, any algorithm must involve unambiguous
instructions and produce the desired output. Mathematically, an algorithm can be represented as
a function, F : I → O, where I is the set of inputs and O is the set of outputs generated by the
algorithm. The word algorithm comes from the name of Persian author “Abu Jafar Mohammad ibn
Musa al Khawarizmi ”.

Note: Although, the phrase algorithm is associated with computer science, the notion compu-
tation (algorithm) did exist for many centuries.

The definition of algorithm sparks natural fundamental questions;

– How to design an algorithm for a given problem?

– Is every problem algorithmically solvable? If so, how many algorithms can a problem have and
how to find the efficient one.

We shall address these questions in this lecture. Let us consider an example of finding a maximum

element in an array of size n. An algorithm is typically described using pseudo code as follows:

Example : Finding a maximum element in an array

Algo Max-array(A,n)

{

Max = A[1];

for i = 2 to n do

if (A[i] > Max) then Max = A[i];

return Max;

}

Note: The maximum can also be computed by sorting the array in an increasing order (decreasing
order) and picking the last element (first element). There are at least five different algorithms to
find a maximum element and therefore, it is natural ask for an efficient algorithm. This calls for
the study of analysis of algorithms.

1.1 Types of Algorithm

There are two ways to write an algorithm, namely, top-down approach (Iterative algorithm) and
bottom-up approach (Recursive algorithm). For example, the iterative and recursive algorithm for
finding a factorial of a given number n is given below:

1. Iterative :

Fact(n)

{

for i = 1 to n

fact = fact * i;

return fact;

}

Here the factorial is calculated as 1 × 2 × 3× . . .× n.

2. Recursive :

Fact(n)

{

if n = 1

return 1;

else

return n * fact(n-1);

}

Here the factorial is calculated as n × (n− 1) × . . .× 1.

2 Algorithm: Analysis

The analysis of algorithms involves the following measures and are listed in the order of priority.

1. Correctness: For any algorithm, a proof of correctness is important which will exhibit the
fact that the algorithm indeed output the desired answer. Often, discovering the underlying
combinatorics is quite challenging.

2. Amount of work done (time complexity) : For a problem, there may exist many algo-
rithms. Comparison of two algorithms is inevitable to pick the best of two. By analysis we mean,
the amount of time and space required to execute the algorithm. A computational problem can
have many algorithms but the estimation of time and space complexity provide an insight into
reasonable directions of search for finding the efficient algorithm. The time Complexity does
not refer to the actual running time of an algorithm in terms of millisec (system time). The

actual running time depends on the system configuration. An algorithm taking 100µs on Intel
machine may take 10µs on an AMD machine. So, the time complexity must be defined indepen-
dent of the system configuration. For each algorithm, we focus on step count: the number

of times each statement in the algorithm is executed, which in some sense reflects the
time complexity. The step count focuses on primitive operations along with basic operations.
Moreover, this number increases with the problem size. Therefore, we express the step count
(time complexity) as a function of the input size. The notion input size and primitive operations
vary from one problem to another. The popular ones are;

Common Problems Associated Primitive

Operations

Input Size

(Search Problem) Find x in an
array A

Comparison of x with other ele-
ments of A

Array size.

Multiply 2 matrices A and B
(Arithmetic on Matrices)

Multiplication and Addition Dimension of the matrix.

Sorting (Arrangement of ele-
ments in some order)

Comparison Array size.

Graph Traversal Number of times an edge is tra-
versed

the number of vertices and
edges.

Any Recursive Procedure Number of recursive calls + time
spent on each recursive call

Array size (for array related
problems).

Finding Factorial Multiplication the input number.

Finding LCM(a,b) Basic arithmetic (division, subtrac-
tion)

the number of bits needed to
represent a and b.

3. Note: The number of primitive operations increases with the problem size. Therefore, we express
the step count (time complexity) as a function of the input size. Space complexity is a related
complexity measure that refers to the amount of space used by an algorithm. Here again,
the analysis focuses on the number of words required leaving the system details. It is good
to highlight that this measure is considered less significant compared to the time complexity
analysis.

4. Optimality: For a given combinatorial problem, there may exist many algorithms. A natural
question is to find the best algorithm (efficient), i.e., one might be interested in discovering best
ever possible. This study also helps us to understand the inherent complexity of the problem.

2.1 Step-count Method and Asymptotic Notation

In this section, we shall look at analysis of algorithms using step count method. Time and space
complexity are calculated using step count method. Some basic assumptions are;

– There is no count for { and } .
– Each basic statement like ’assignment’ and ’return’ have a count of 1.
– If a basic statement is iterated, then multiply by the number of times the loop is run.
– The loop statement is iterated n times, it has a count of (n + 1). Here the loop runs n times

for the true case and a check is performed for the loop exit (the false condition), hence the
additional 1 in the count.

Examples for Step-Count Calculation:

1. Sum of elements in an array

Step-count (T.C) Step-count (Space)

Algorithm Sum(a,n)

{ 0

sum = 0; 1 1 word for sum

for i = 1 to n do n+1 1 word each for i and n

sum = sum + a[i]; n n words for the array a[]

return sum; 1

} 0

Total: 2n+3 (n+3) words

2. Adding two matrices of order m and n

Algorithm Add(a, b, c, m, n) Step Count

{

for i = 1 to m do ---- m + 1

for j = 1 to n do ---- m(n + 1)

c[i,j] = a[i,j] + b[i,j] ---- m.n

} -------------

Total no of steps= 2mn + 2m + 2

Note that the first ’for loop’ is executed m + 1 times, i.e., the first m calls are true calls during
which the inner loop is executed and the last call (m+ 1)th call is a false call.

3. Fibonacci series

algorithm Fibonacci(n) Step Count

{

if n <= 1 then ---- 1

output ’n’

else

f2 = 0; ---- 1

f1 = 1; ---- 1

for i = 2 to n do ---- n

{

f = f1 + f2; ---- n - 1

f2 = f1; ---- n - 1

f1 = f; ---- n - 1

}

output ’f’ ---- 1

} --------

Total no of steps= 4n + 1

Note that if n ≤ 1 then the step count is just two and 4n+ 1 otherwise.

4. Recursive sum of elements in an array

algorithm RecursiveSum(a, n) Step Count

{

if n <= 0 then ---- 1

return 0; ---- 1

else

return RecursiveSum(a, n-1) + a[n]; ---- 2 + Step Count of recursive call

}

Note that step count of two is added at each recursive call. One count for making a ’recursive call’
with (n− 1) size input and the other count is for addition when the recursion bottoms out. Let the
Step count of array of size n be denoted as T(n), then the step-count for the above algorithm is

– T(n) = 3 + T(n-1), n > 0 /* one count for the ’if’ statement and two counts at

’return statement’ + count on recursive call */

– T(n) = 2, n ≤ 0

Solving, the above equation yields T (n) = 3n+ 2.

2.2 Order of Growth

Performing step count calculation for large algorithms is a time consuming task. A natural way is
to upper bound the time complexity instead of finding the exact step count. Order of Growth or
Rate of Growth of an algorithm gives a simple characterization of the algorithm’s efficiency by
identifying relatively significant term in the step count. (e.g.) For an algorithm with a step count
2n2+3n+1, the order of growth depends on 2n2 for large n. Other terms are relatively insignificant
as n increases. Asymptotic analysis is a technique that focuses analysis on the ’significant term’. In
the next section, we shall look at some of the commonly used asymptotic notations in the literature.
The popular ones are;

1. Big-oh Notation (O) - To express an upper bound on the time complexity as a function of the
input size.

2. Omega (Ω) - To express a lower bound on the time complexity as a function of the input size.
3. Theta (Θ) - To express the tight bound on the time complexity as a function of the input size.

2.3 Asymptotic upper bounds

Big-oh notation
The function f(n) = O(g(n)) if and only if there exist positive constants c, n0 such that
f(n) ≤ cg(n), ∀n ≥ n0. Big-oh can be used to denote all upper bounds on the time complexity of
an algorithm. Big-oh also captures the worst case analysis of an algorithm.
Examples:

1. 3n+ 2
3n+ 2 ≤ 4n, c = 4 ∀n ≥ 2
⇒ 3n+ 2 = O(n)
Note that 3n+ 2 is O(n2), O(n3), O(2n), O(10n) as per the definition. i.e., it captures all upper
bounds. For the above example, O(n) is a tight upper bound whereas the rest are loose upper
bounds. Is there any notation which captures all the loose upper bounds?

2. 100n+ 6 = O(n)
100n+ 6 ≤ 101.n, c = 101 ∀n ≥ 6. One can also write 100n+ 6 = O(n3).

3. 10n2 + 4n+ 2 = O(n2)
10n2 + 4n+ 2 ≤ 11.n2, c = 11 ∀n ≥ 5

4. 6.2n + n2 = O(2n)
6.2n + n2 ≤ 7.2n, c = 7 ∀n ≥ 7

5. 3n+ 3 = O(2n)
3n+ 3 ≤ 10.2n, c = 10 ∀n ≥ 1

6. n3 + n+ 5 = O(n3)
n3 + n+ 5 ≤ 7.n3, c = 7,∀n ≥ 1

Remark:

– Note that 3n + 2 6= O(1). i.e., there does not exist c and n0 such that, 3n + 2 ≤ c.1 for all n
beyond n0. However large the c is, there exist n beyond which 3n+ 2 > c.1.

– 10n2 + 4n+ 2 6= O(n).

– 3n 6= O(2n). We shall prove this by contradiction. Suppose 3n = O(2n), then by definition,
3n ≤ c2n. This implies that 1.5n ≤ c where c is a positive constant, which is a contradiction.

– n! ≤ c.nn for c = 1 and ∀n ≥ 2 i.e., n! = O(nn). Moreover, from Stirling’s approximation it
follows that n! ≈

√
2nπ.nne−n

Next we present the notation which precisely captures the loose upper bounds.

o-notation
The asymptotic upper bound provided by O-notation may or may not be asymptotically tight.
The bound 2n2=O(n2) is asymptotically tight, but the bound 2n=O(n2) is not. We use o-notation
(Little oh) to denote an upper bound that is not asymptotically tight. We formally define as
f(n) = o(g(n)) if for any positive constant c > 0, there exists a positive constant n0 > 0 such that
0 ≤ f(n) < c.g(n) for all n ≥ n0.
Note that in the definition the inequality works for any positive constant c > 0. This is true because
g(n) is a loose upper bound, and hence g(n) is polynomially larger than f(n) by nε, ε > 0. Due to
this nε, the contribution of c to the inequality is minimal which is why the quantifier in o notation
is universal whereas in O is existential.
For example,

1. 2n = o(n2), but 2n2 6= o(n2). Note that here n2 is polynomially larger than 2n by nε, ε = 1.

2. 100n+6 = o(n1.2) Here n1.2 is polynomially larger than 100n+6 by nε, ε = 0.2. For any positive
constant c, there exist n0 such that ∀n ≥ n0, 100n+ 6 ≤ c.n1.2

3. 10n2 + 4n+ 2 = o(n3) Here n3 is polynomially larger than 10n2 + 4n+ 2 by nε, ε = 1

4. 6.2n + n2 = o(3n) Note that 3n is 1.5n × 2n. So for any c > 0, 2n ≤ c.3n. The value of c is
insignificant as 1.5n dominates any c > 0.

5. 3n+ 3 = o(n1.00001) Here n1.00001 is polynomially larger than 3n+ 3 by nε, ε = 0.00001

6. n3 + n+ 5 = o(n3.1) Here n3.1 is polynomially larger than n3 + n+ 5 by nε, ε = 0.1

Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches

infinity; that is, lim
n→∞

f(n)

g(n)
= 0

Having looked at the upper bounds, in the similar way we shall now see asymptotic lower bounds.

http://stat.fsu.edu/techreports/M763.pdf

2.4 Asymptotic lower bounds

Omega notation
The function f(n) = Ω(g(n)) if and only if there exist positive constants c, n0 such that f(n) ≥
c.g(n),∀n ≥ n0. Omega can be used to denote all lower bounds of an algorithm. Omega notation
also denotes the best case analysis of an algorithm.
Examples:

1. 3n+ 2
3n+ 2 ≥ n, ∀n ≥ 1
⇒ 3n+ 2 = Ω(n)

2. 10n2 + 4n+ 2 = Ω(n2)
10n2 + 4n+ 2 ≥ n2, c = 1 ∀n ≥ 1

3. n3 + n+ 5 = Ω(n3)
n3 + n+ 5 ≥ n3, c = 1,∀n ≥ 0

4. 2n2 + n log n+ 1 = Ω(n2)
2n2 + n log n+ 1 ≥ 2.n2, c = 2,∀n ≥ 1

5. 6.2n + n2 = Ω(2n) = Ω(n2) = Ω(n) = Ω(1)
6.2n + n2 ≥ 2n, c = 1 ∀n ≥ 1
Of the above, Ω(2n) is a tight lower bound, while all others are loose lower bounds.

Remark:

– 3n2 + 2 6= Ω(n3). Reason: There does not exist a positive constant c such that 3n2 + 2 ≥ c.n3

for every n ≥ n0 as we cannot bound n by a constant. That is, on the contrary if 3n2 +2 ≥ c.n3,
then n ≤ 1

c is a contradiction.

– 3.2n 6= Ω(n!).

– 5 6= Ω(n).

ω-notation
We use ω-notation to denote a lower bound that is not asymptotically tight.
We define ω(g(n)) (little-omega) as
f(n) = ω(g(n)) if for any positive constant c > 0, there exists a positive constant n0 > 0 such that
0 ≤ c.g(n) < f(n) for all n ≥ n0.
For example,

1. n2 = ω(n) but n2 6= ω(n2).

2. 3n+ 2 = ω(log(n))

3. 10n3 + 4n+ 2 = ω(n2)

4. 5n6 + 7n+ 9 = ω(n3)

5. 2n2 + n log n+ 1 = ω(n1.9999999)

6. 15× 3n + n2 = ω(2n) = ω(n2) = ω(n) = ω(1)

The relation f(n) = ω(g(n)) implies that lim
n→∞

f(n)

g(n)
=∞, if the limit exists. That is, f(n) becomes

arbitrarily large relative to g(n) as n approaches infinity.

2.5 Asymptotic tight bound

Theta notation
The function f(n) = Θ(g(n)) if and only if there exist positive constants c1, c2, n0 such that
c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0. Theta can be used to denote tight bounds of an algorithm.
i.e., g(n) is a lower bound as well as an upper bound for f(n). Note that f(n) = Θ(g(n)) if and
only if f(n) = Ω(g(n)) and f(n) = O(g(n)).
Examples

1. 3n+ 1010

3n ≤ 3n+ 1010 ≤ 4n,∀n ≥ 1010

⇒ 3n+ 1010 = Θ(n)
Note that the first inequality captures 3n+ 1010 = Ω(n) and the later one captures 3n+ 1010 =
O(n).

2. 10n2 + 4n+ 2 = Θ(n2)
10n2 ≤ 10n2 + 4n+ 2 ≤ 20n2, ∀n ≥ 1, c1 = 10, c2 = 20

3. 6(2n) + n2 = Θ(2n)
6(2n) ≤ 6(2n) + n2 ≤ 12(2n), ∀n ≥ 1, c1 = 6, c2 = 12

4. 2n2 + n log n+ 1 = Θ(n2)
2n2 ≤ 2n2 + n log2 n+ 1 ≤ 5.n2,∀n ≥ 2, c1 = 2, c2 = 5

5. n
√
n+ n log2(n) + 2 = Θ(n

√
n)

n
√
n ≤ n

√
n+ n log2(n) + 2 ≤ 5.n

√
n, ∀n ≥ 2, c1 = 1, c2 = 5

Remark:

– 3n+ 2 6= Θ(1). Reason: 3n+ 2 6= O(1)

– 3n+ 3 6= Θ(n2). Reason: 3n+ 3 6= Ω(n2)

– n2 6= Θ(2n). Reason: n2 6= Ω(2n) Proof: Note that f(n) ≤ g(n) if and only if log(f(n)) ≤
log(g(n)). Suppose n2 = Ω(2n), then by definition n2 ≥ c.2n where c is a positive constant.
Then, log(n2) ≥ log(c.2n), and 2 log(n) ≥ n log(2), which is a contradiction.

3 Properties of Asymptotic notation

1. Reflexivity

f(n) = O(f(n)) f(n) = Ω(f(n)) f(n) = θ(f(n))

2. Symmetry

f(n) = θ(g(n)) if and only if g(n) = θ(f(n))

Proof:

Necessary part: f(n) = θ(g(n))⇒ g(n) = θ(f(n))
By the definition of θ , there exists positive constants c1, c2, no such that c1.g(n) ≤ f(n) ≤ c2.g(n)
for all n ≥ no

⇒ g(n) ≤ 1

c1
.f(n) and g(n) ≥ 1

c2
.f(n)

⇒ 1

c2
f(n) ≤ g(n) ≤ 1

c1
f(n)

Since c1 and c2 are positive constants,
1

c1
and

1

c2
are well defined. Therefore, by the definition

of θ , g(n) = θ(f(n))

Sufficiency part: g(n) = θ(f(n))⇒ f(n) = θ(g(n))

By the definition of θ , there exists positive constants c1, c2, no such that c1.f(n) ≤ g(n) ≤ c2.f(n)
for all n ≥ no

⇒ f(n) ≤ 1

c1
.g(n) and f(n) ≥ 1

c2
.g(n)

⇒ 1

c2
.g(n) ≤ f(n) ≤ 1

c1
.g(n)

By the definition of θ , f(n) = θ(g(n))
This completes the proof of Symmetry property.

3. Transitivity

f(n) = O(g(n)) and g(n) = O(h(n))⇒ f(n) = O(h(n))

Proof:

f(n) = O(g(n)) and g(n) = O(h(n))⇒ f(n) = O(h(n))

By the definition of Big-Oh(O) , there exists positive constants c, no such that f(n) ≤ c.g(n)
for all n ≥ no

⇒ f(n) ≤ c1.g(n)

⇒ g(n) ≤ c2.h(n)

⇒ f(n) ≤ c1.c2h(n)

⇒ f(n) ≤ c.h(n), where, c = c1.c2

By the definition, f(n) = O(h(n)) Note : Theta(Θ) and Omega(Ω) also satisfies Transitivity
Property.

4. Transpose Symmetry

f(n) = O(g(n)) if and only if g(n) = Ω(f(n))
Proof:

Necessity: f(n) = O(g(n))⇒ g(n) = Ω(f(n))

By the definition of Big-Oh (O)

⇒ f(n) ≤ c.g(n) for some positive constant c

⇒ g(n) ≥ 1

c
f(n)

By the definition of Omega (Ω) , g(n) = Ω(f(n))

Sufficiency: g(n) = Ω(f(n))⇒ f(n) = O(g(n))

By the definition of Omega (Ω), for some positive constant c

⇒ g(n) ≥ c.f(n)

⇒ f(n) ≤ 1

c
g(n)

By the definition of Big-Oh(O) , f(n) = O(g(n))
Therefore, Transpose Symmetry is proved.

4 Some more Observations on Asymptotic Notation

Lemma 1. Let f(n) and g(n) be two asymptotic non-negative functions.
Then, max(f(n), g(n)) = θ(f(n) + g(n))

Proof. Without loss of generality, assume f(n) ≤ g(n), ⇒ max(f(n), g(n)) = g(n)

Consider, g(n) ≤ max(f(n), g(n)) ≤ g(n)

⇒ g(n) ≤ max(f(n), g(n)) ≤ f(n) + g(n)

⇒ 1
2g(n) + 1

2g(n) ≤ max(f(n), g(n)) ≤ f(n) + g(n)

From what we assumed,we can write

⇒ 1
2f(n) + 1

2g(n) ≤ max(f(n), g(n)) ≤ f(n) + g(n)

⇒ 1
2(f(n) + g(n)) ≤ max(f(n), g(n)) ≤ f(n) + g(n)

By the definition of θ ,

max(f(n), g(n)) = θ(f(n) + g(n))

Lemma 2. For two asymptotic functions f(n) and g(n), O(f(n))+O(g(n)) = O(max(f(n), g(n)))

Proof. Without loss of generality, assume f(n) ≤ g(n)

⇒ O(f(n)) +O(g(n)) = c1f(n) + c2g(n)

From what we assumed,we can write

O(f(n)) +O(g(n)) ≤ c1g(n) + c2g(n)

≤ (c1 + c2)g(n)

≤ c g(n)

≤ c max(f(n), g(n))

By the definition of Big-Oh(O),

O(f(n)) +O(g(n)) = O(max(f(n), g(n)))

Remarks :

1. If lim
n→∞

f(n)

g(n)
= c, c ∈ R+ then f(n) = θ(g(n))

2. If lim
n→∞

f(n)

g(n)
≤ c, c ∈ R (c can be 0) then f(n) = O(g(n))

3. If lim
n→∞

f(n)

g(n)
= 0, then f(n) = O(g(n)) and g(n) 6= O(f(n))

4. If lim
n→∞

f(n)

g(n)
≥ c, c ∈ R(c can be ∞) then f(n) = Ω(g(n))

5. If lim
n→∞

f(n)

g(n)
=∞, then f(n) = Ω(g(n)) and g(n) 6= Ω(f(n))

6. L
′
Hôpital Rule : If f(n) and g(n) are both differentiable with derivates f ′(n) and g′(n), re-

spectively, and if lim
n→∞

f(n) = lim
n→∞

g(n) =∞

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)

whenever the limit on the right exists.

• Remark 1 characterizes tight bounds (θ).

• Remark 2 characterizes all upper bounds (O).

• Remark 3 characterizes loose upper bounds (Little Oh).

• Remark 4 characterizes all lower bounds (Ω).

• Remark 5 characterizes loose lower bounds (Little omega).

Lemma 3. Show that log n = O(
√
n), however,

√
n 6= O(log n)

Proof.

lim
n→∞

f(n)

g(n)
= lim

n→∞

log n√
n

Applying L
′
Hôpital Rule,

lim
n→∞

f(n)

g(n)
= lim

n→∞

1
n

1
2 .n
− 1

2

= lim
n→∞

2√
n

= 0

From Remark 3, f(n) = O(g(n)) => log n = O(
√
n).

Proof for
√
n 6= O(log n)

lim
n→∞

f(n)

g(n)
= lim

n→∞

√
n

log n

lim
n→∞

f(n)

g(n)
= lim

n→∞

1
2 .n
− 1

2

1
n

= lim
n→∞

√
n

2
=∞

From Remark 3, f(n) = Ω(g(n))⇒
√
n = Ω(log n).⇒

√
n 6= O(log n)

Note: There are asymptotic functions which can not be compared using any of the above notation.
For example, the following two functions f(n) and g(n) are such that f(n) 6= O(g(n)) and g(n) 6=
O(f(n))

• f(n) = n and g(n) = n1+Sin(n)

• f(n) = nCos2(n) and g(n) = nSin2(n)

function n = 0 n = π
2 n = π n = 3π

2 n = 2π n = 5π
2

Sin(n) 0 1 0 -1 0 1
1 + Sin(n) 1 2 1 0 1 2
Cos(n) 1 0 -1 0 1 0
Cos2(n) 1 0 1 0 1 0
Sin2(n) 0 1 0 1 0 1

It can be observed that neither n = O(n1+Sin(n)) nor n = Ω(n1+Sin(n)) as n1+Sin(n) is a periodic
function that oscillates between n0 and n2. Similarly, nCos2(n) 6= O(nSin2(n)), and nCos2(n) 6=
Ω(nSin2(n)) as both the functions are periodic that oscillates with a phase shift of π

2 . Note that if

g(n) = n2+Sin(n), then f(n) and g(n) are asymptotically comparable.

Acknowledgements: Lecture contents presented in this module and subsequent modules are
based on the text books mentioned at the reference and most importantly, author has greatly learnt
from lectures by algorithm exponents affiliated to IIT Madras/IMSc; Prof C. Pandu Rangan, Prof
N.S.Narayanaswamy, Prof Venkatesh Raman, and Prof Anurag Mittal. Author sincerely acknowl-
edges all of them. Special thanks to Teaching Assistants Mr.Renjith.P and Ms.Dhanalakshmi.S for
their sincere and dedicated effort and making this scribe possible. Author has benefited a lot by
teaching this course to senior undergraduate students and junior undergraduate students who have
also contributed to this scribe in many ways. Author sincerely thank all of them.

References:
1. E.Horowitz, S.Sahni, S.Rajasekaran, Fundamentals of Computer Algorithms, Galgotia Publica-
tions.
2. T.H. Cormen, C.E. Leiserson, R.L.Rivest, C.Stein, Introduction to Algorithms, PHI.
3. Sara Baase, A.V.Gelder, Computer Algorithms, Pearson.

