
Indian Institute of Information Technology Design and Manufacturing,
Kancheepuram, Chennai 600 127, India

An Autonomous Institute under MHRD, Govt of India

http://www.iiitdm.ac.in
COM 209T Design and Analysis of Algorithms -Lecture Notes

Instructor
N.Sadagopan

Scribe:
Dhanalakshmi S

Dynamic Programming

In earlier lectures we have discussed paradigms such as incremental design (e.g., insertion sort), divide and
conquer (e.g., binary search, merge sort, quick sort) which are the most sought after paradigms to design
algorithms for many classical problems. In this lecture, we shall discuss another paradigm, ’Dynamic Pro-
gramming’ which is a popular paradigm to design algorithms for many optimization problems. This method
has close resemblance to divide and conquer. Divide and conquer is a problem strategy if subproblems are
independent whereas dynamic programming is preferred to divide and conquer if subproblems are overlap-
ping. Due to overlapping subproblems, subproblems are solved only once and stored in a table which will
be referred when it is encountered again during the course of the algorithm. Table helps to avoid recompu-
tation of a subproblem and retrieves the solution to subproblem in constant time. Further, the solution to
a problem is computed using the solutions to subproblems and hence it is clear that dynamic programming
adopts a bottom-up strategy unlike divide and conquer which follows a top-down strategy.

When developing a dynamic programming algorithm, we follow a sequence of four steps [1] :

1. Characterize the structure of the optimal solution (Optimal Substructure).

2. Recursively define the value of an optimal solution (Recursive Solution).

3. Compute the value of an optimal solution, typically in a bottom-up fashion (The algorithm).

4. Construct an optimal solution from computed information.

We shall discuss dynamic programming in detail through the following case studies. We refer to [1] for
Assembly line scheduling and matrix chain multiplication and [2, 3] for 0-1 knapsack, traveling salesman,
and optimal binary search trees case studies.

1 Assembly Line Scheduling in Manufacturing Sector

Problem Statement: A manufacturing company has two assembly lines, each with n stations. A station is
denoted by Si,j where i denotes the assembly line the station is on and j denotes the number of the station.
The time taken per station is denoted by ai,j . Each station is dedicated to do some sort of work in the
manufacturing process. So, a chassis must pass through each of the n stations in order before exiting the
company. The parallel stations of the two assembly lines perform the same task. After it passes through
station Si,j , it will continue to station Si,j+1 unless it decides to transfer to the other line. Continuing on
the same line incurs no extra cost, but transferring from line i at station j − 1 to station j on the other line
takes time ti,j . Each assembly line takes an entry time ei and exit time xi. Give an algorithm for computing
the minimum time from start to exit.

Objective: To find the optimal scheduling i.e., the fastest way from start to exit.
Note: let fi[j] denotes the fastest way from start to station Si,j .

Optimal Substructure: An optimal solution to a problem is determined using optimal solutions to sub-
problems (in turn, sub subproblems and so on). The immediate question is, how to break the problem in to
smaller sub problems ? the answer is: if we know the minimum time taken by the chassis to leave station
Si,j−1, then the minimum time taken to leave station Si,j can be calculated quickly by combining ai,j and

ti,j .
Final Solution: fOPT = min{f1[n] + x1, f2[n] + x2}.
Base Cases: f1[1] = e1 + a1,1 and f2[1] = e2 + a2,1.

Recursive Solution:
The chassis at station S1,j can come either from station S1,j−1 or station S2,j−1 (Since, the tasks done by
S1,j and S2,j are same). But if the chassis comes from S2,j−1, it additionally incurs the transfer cost to
change the assembly line. Thus, the recursion to reach the station j in assembly line i are as follows:

f1[j] =

{
e1 + a1,1 if j = 1

min {f1[j − 1] + a1,j , f2[j − 1] + t2,j−1 + a1,j} if j ≥ 2

f2[j] =

{
e2 + a2,1 if j = 1

min {f2[j − 1] + a2,j , f1[j − 1] + t1,j−1 + a2,j} if j ≥ 2

Why Dynamic Programming ?
The given problem is an optimization problem and the above recursion exhibits the overlapping sub problems.
Since, there are two ways to reach station S1,j , the minimum time to leave station S1,j can be calculated by
finding the minimum time to leave the previous two stations, S1,j−1 and S2,j−1. Since this problem exploits
both optimal substructure property and overlapping subproblems property, it is a candidate problem for
dynamic programming.

The algorithm: Fastest-way(a, t, e, x, n) Source: CLRS

where a denotes the assembly costs, t denotes the transfer costs, e denotes the entry costs, x denotes
the exit costs and n denotes the number of assembly stages.

1.f1[1] = e1 + a1,1
2.f2[1] = e2 + a2,1
3. for j = 2 to n
4. if ((f1[j − 1] + a1,j) ≤ (f2[j − 1] + t2,j−1 + a1,j)) then
5. f1[j] = f1[j − 1] + a1,j and l1[j] = 1 /* lp denotes the line p */
6. else
7. f1[j] = f2[j − 1] + t2,j−1 + a1,j and l1[j] = 2
8. if ((f2[j − 1] + a2,j) ≤ (f1[j − 1] + t1,j−1 + a2,j)) then
9. f2[j] = f2[j − 1] + a2,j and l2[j] = 2
10. else
11. f2[j] = f1[j − 1] + t1,j−1 + a2,j and l2[j] = 1
12. end for
13. if (f1[n] + x1 ≤ f2[n] + x2) then
14. fOPT = f1[n] + x1 and lOPT = 1
15. else
16. fOPT = f2[n] + x2 and lOPT = 2

1.1 Trace of the algorithm

Consider the below figure as the input.
Iteration 1: j = 1 and j = 2
f1[1] = e1 + a1,1 = 2 + 7 = 9 and start = S1,1

f2[1] = e2 + a2,1 = 4 + 8 = 12 and start = S2,1

f1[2] = min{f1[1] + a1,2, f2[1] + t2,1 + a1,2} = min{9 + 9, 12 + 2 + 9} = 18, l1[2] = 1
f2[2] = min{f2[1] + a2,2, f1[1] + t1,1 + a2,2} = min{12 + 5, 9 + 2 + 5} = 16, l2[2] = 1

Iteration 2: j = 3

2

2

4

7

8

89 3 4 4

5 6 4 5 7

2

3

Chassis
Entry

Exit

2

2

3

1

1 3 4

2 2 1

Entry Cost

Entry Cost

Assembly Line 1

Assembly Line 2

Exit Cost

Exit Cost

Transfer Cost

StationS1,1 S1,2 S1,3 S1,4
S1,5

S1,6

S2,1 S2,2 S2,3 S2,4
S2,5

S2,6

t 1,1 t 1,2 t 1,3 t 1,4
t 1,5

t 2,1 t 2,2
t 2,3

t 2,4
t 2,5

Assembly
Product is
Ready

Figure 1: An illustration of assembly line scheduling problem with six stations

f1[3] = min{f1[2] + a1,3, f2[2] + t2,2 + a1,3} = min{18 + 3, 16 + 1 + 3} = 20, l1[3] = 2
f2[3] = min{f2[2] + a2,3, f1[2] + t1,2 + a2,3} = min{16 + 6, 18 + 3 + 6} = 22, l2[3] = 2

Iteration 3: j = 4
f1[4] = min{f1[3] + a1,4, f2[3] + t2,3 + a1,4} = min{20 + 4, 22 + 2 + 4} = 24, l1[4] = 1
f2[4] = min{f2[3] + a2,4, f1[3] + t1,3 + a2,4} = min{22 + 4, 20 + 1 + 4} = 25, l2[4] = 1

Iteration 4: j = 5
f1[5] = min{f1[4] + a1,5, f2[4] + t2,4 + a1,5} = min{24 + 8, 25 + 2 + 8} = 32, l1[5] = 1
f2[5] = min{f2[4] + a2,5, f1[4] + t1,4 + a2,5} = min{25 + 5, 24 + 3 + 5} = 30, l2[5] = 2

Iteration 5: j = 6
f1[6] = min{f1[5] + a1,6, f2[5] + t2,5 + a1,6} = min{32 + 4, 30 + 1 + 4} = 35, l1[6] = 2
f2[6] = min{f2[5] + a2,6, f1[5] + t1,5 + a2,6} = min{30 + 7, 32 + 4 + 7} = 37, l2[6] = 2
Optimum Schedule: min{f1[6] + x1, f2[6] + x2} = {35 + 3, 37 + 2} = 38 ; lOPT = 1.

Constructing an optimal solution: We now show how to construct an optimal solution using the above
table values. Note that li[j] stores the line number (1 or 2) that minimizes the total cost from start to station
j − 1. The optimal solution from start to exit comes from the station S1,6 (ref. Iteration 5). The fastest
way to reach the station S1,6 from start, f1[6], comes from f2[5] i.e., from the station S2,5 (ref. Iteration
4). The fastest way to reach the station S2,5 from start, f2[5], comes from f2[4] i.e., from the station S2,4 (
ref. Iteration 3). The fastest way to reach the station S2,4 from start, f2[4], comes from f1[3] i.e., from the
station S1,3 (ref. Iteration 2). The fastest way to reach the station S1,3 from start, f1[3], comes from f2[2]
i.e., from the station S2,2 (ref. Iteration 1). The fastest way to reach the station S2,2 from start, f2[2],
comes from f1[1] i.e., from the station S1,1, which is one of the base cases (ref. Iteration 1). Thus, the
optimal schedule is:
Chassis Start→ e1 → S1,1 → t1,1 → S2,2 → t2,2 → S1,3 → t1,3 → S2,4 → S2,5 → t2,5 → S1,6 → x1 → exit.

Run time of this algorithm is θ(n)
Note: Brute force method of finding one optimal solution takes exponential time i.e., it takes 2n possibilities
for n scheduled sub tasks, as each station has two choices.

3

2 Optimal Order in Matrix Chain Multiplication

Our next case study for dynamic programming is to find the optimal order to solve matrix chain multipli-
cation. Given a sequence {A1, A2, A3, . . . , An} of n matrices, our objective is to find an optimal order to
multiply a sequence of matrices minimizing the number of scalar multiplications. Note that the objective is
not to multiply matrices, instead, to identify the order of multiplications. Since the matrix multiplication is
associative, we have many options to multiply a chain of matrices. i.e., no matter how we parenthesize the
product, the result will be same. For example, if the chain of matrices is {A1, A2, A3, A4}, then we can fully
parenthesis (either a single matrix or the product of two fully parenthesized matrix products, surrounded by
parentheses) the product A1 ·A2 ·A3 ·A4 in five distinct ways:

1. ((A1 ·A2) · (A3 ·A4))

2. (((A1 ·A2) ·A3) ·A4)

3. (A1 · (A2 · (A3 ·A4)))

4. ((A1 · (A2 ·A3)) ·A4)

5. (A1 · ((A2 ·A3) ·A4))

We have to choose the one among the above five ways which gives the minimum number of multiplications.
For example, suppose if all A1, A2, A3 and A4 are a 10× 10 matrix. Then, the number of multiplications in
all the five ways is 103 + 103 + 103 = 3000. Suppose if the order of each matrix is different, say, order of A1

is 10× 20, A2 is 20× 10, A3 is 10× 10 and A4 is 10× 20.
The number of multiplications in the first way is 10× 20× 10 + 10× 10× 20 + 10× 10× 20 = 6000.
The number of multiplications in the second way is 10× 20× 10 + 10× 10× 10 + 10× 10× 20 = 5000.
The number of multiplications in the third way is 10× 10× 20 + 20× 10× 20 + 10× 20× 20 = 10000.
The number of multiplications in the fourth way is 20× 10× 10 + 10× 20× 10 + 10× 10× 20 = 6000.
The number of multiplications in the fifth way is 20× 10× 10 + 20× 10× 20 + 10× 20× 20 = 10000.
Clearly, the second parenthesization requires the least number of operations.

Optimal Substructure:
Optimal solution to A1 ·A2 ·A3 · · ·An contains within optimal solution to (A1 ·A2 · · ·Ak)(Ak+1 ·Ak+2 · · ·An).

Recursive Solution:
Let M [i, j] denotes the minimum number of scalar multiplications needed to compute the matrix Ai...j . The
order of a matrix Ai be (pi−1, pi) and the order of Ai...k be (pi−1, pk). Now, let us define M [i, j] recursively
as follows:

M [i, j] =

{
0 if i = j

mini≤k<j{M [i, k] +M [k + 1, j] + pi−1pkpj} if i < j

The M [i, j] values give the costs of optimal solutions to sub problems, but they do not provide all the in-
formation we need to construct an optimal solution. To help us do so, we define S[i, j] to be a value of k at
which we split the product Ai ·Ai+1 · · ·Aj in an optimal parenthesization.

Why Dynamic Programming ?
The given problem is an optimization problem and the above recursion exhibits the overlapping sub problems.
Since, for each choice of i and j satisfying 1 ≤ i ≤ j ≤ n, computing M [i, j] requires M [i, k] and M [k+ 1, n],
i ≤ k < j. A recursive algorithm may encounter each sub problem many times in different branches of its
recursion tree. As this case study satisfies, overlapping sub problems and optimal substructure properties,
candidate problem for applying dynamic programming.

4

The algorithm: Matrix-chain-order(p) Source: CLRS [1]

Input: Sequence of matrices A1, A2, . . . , An with order < p0, p1 >,< p1, p2 >, . . . , < pn−1, pn > respectively.
1.n = length(p)− 1
2. for i = 1 to n
3. M [i, i] = 0
4. for l = 2 to n /* l denotes the length of the chain */
5. for i = 1 to n− l + 1
6. j = i+ l − 1
7. M [i, j] =∞
8. for k = i to j − 1
9. q = M [i, k] +M [k + 1, j] + pi−1pkpj
10. q < M [i, j]
11. M [i, j] = q
12. S[i, j] = k
13.Return M and S

2.1 Trace of the algorithm

Consider an example for matrix chain order where n = 4 (thus, the length of the chain is 3) and the matrix

dimensions are as follows:
matrix A1 A2 A3 A4

dimensions 2× 3 3× 4 4× 4 4× 1

Iteration 1:
n = length(p)− 1 = 5− 1 = 4 (length(p) = length(p0p1p2p3p4) = 5)
M [1, 1] = M [2, 2] = M [3, 3] = M [4, 4] = 0
l = 2
i = 1
j = 2

 (k = 1 to 1)⇒ q = M [1, 1] +M [2, 2] + 2 · 3 · 4 = 24

Since, q < M [1, 2] =∞, M [1, 2] = 24 and S[1, 2] = 1

Iteration 2:
l = 2
i = 2
j = 3

 (k = 2 to 2)⇒ q = M [2, 2] +M [3, 3] + 3 · 4 · 4 = 48

Since, q < M [2, 3] =∞, M [2, 3] = 48 and S[2, 3] = 2

Iteration 3:
l = 2
i = 3
j = 4

 (k = 3 to 3)⇒ q = M [3, 3] +M [4, 4] + 4 · 4 · 1 = 16

Since, q < M [3, 4] =∞, M [3, 4] = 16 and S[3, 4] = 3

Iteration 4:
l = 3
i = 1
j = 3

 M [1, 3] =∞
(k = 1 to 2)

k = 1⇒ q = M [1, 1] +M [2, 3] + 2 · 3 · 4 = 0 + 48 + 24 = 72; 72 < M [1, 3];M [1, 3] = 72;S[1, 3] = 1
k = 2⇒ q = M [1, 2] +M [3, 3] + 2 · 4 · 4 = 24 + 0 + 32 = 56; 56 < M [1, 3];M [1, 3] = 56;S[1, 3] = 2

Thus, M [1, 3] = 56 and S[1, 3] = 2

Iteration 5:
l = 3
i = 2
j = 4

 M [2, 4] =∞
(k = 2 to 3)

k = 2⇒ q = M [2, 2] +M [3, 4] + 3 · 4 · 1 = 0 + 16 + 12 = 28; 28 < M [2, 4];M [2, 4] = 28;S[2, 4] = 2
k = 3⇒ q = M [2, 3] +M [4, 4] + 3 · 4 · 1 = 48 + 0 + 12 = 60; 60 ≮ M [2, 4]

Thus, M [2, 4] = 28 and S[2, 4] = 2

5

Iteration 6:
l = 4
i = 1
j = 4

 M [1, 4] =∞
(k = 1 to 3)

k = 1⇒ q = M [1, 1] +M [2, 4] + 2 · 3 · 1 = 0 + 28 + 6 = 34; 34 < M [1, 4];M [1, 4] = 34;S[1, 4] = 1
k = 2⇒ q = M [1, 2] +M [3, 4] + 2 · 4 · 1 = 24 + 16 + 8 = 48; 48 ≮ M [1, 4]
k = 3⇒ q = M [1, 3] +M [4, 4] + 2 · 4 · 1 = 56 + 0 + 8 = 74; 74 ≮ M [1, 4]

Thus, M [1, 4] = 34 and S[1, 4] = 1

i | j 1 2 3 4
1 0 24 56 34
2 0 48 28
3 0 16
4 0

Constructing an optimal solution: The minimum number of scalar multiplications needed to compute
the product A1 ·A2 ·A3 ·A4 with the given order is 34. The corresponding parenthesization is (A1 ·(A2 ·A3 ·A4))
(Since, the minimum of M [1, 4] comes from M [1, 1] and M [2, 4]) = (A1 ·(A2 ·(A3 ·A4))) (Since, the minimum
of M [2, 4] comes from M [2, 2] and M [3, 4]). Hence, the optimal order for the given matrix chain multiplica-
tion is (A1 · (A2 · (A3 ·A4))).

Run time of this algorithm is O(n3), whereas, the trivial algorithm runs in Ω(x) time, where x is the
number of ways of parenthesizing a sequence of matrices. The number of ways of parenthesizing a chain of
matrices is catalan number, i.e., x is 1

n+1

(
2n
n

)
.

3 Knapsack Problem

Given a set of objects x1, x2, . . . , xn with weights w1, w2, . . . , wn, profits p1, p2, . . . , pn, and the capacity of
the knapsack W . Our objective is to find a subset S ⊆ {x1, x2, . . . , xn} of maximum profit, subject to the
constraints, ∑

i∈S
wi ≤W

.

Optimal Substructure:
LetOPT denotes the optimum solution. If nth object is not part ofOPT , thenOPT (n,W) = OPT (n−1,W).
Otherwise, OPT (n,W) = pn + OPT (n − 1,W − wn). i.e., if n is not a part of the optimum solution, then
finding the optimum solution for n objects is equivalent to finding the optimum solution for n − 1 ob-
jects (excluding the nth object). Suppose, if n is a part of the optimum solution, then optimum solution for
n objects is equivalent to the optimum solution for n−1 objects with W = W−wn + profit of the nth object.

Recursive sub problem:
If W < wi, then OPT (i,W) = OPT (i− 1,W).
Otherwise, OPT (i,W) = max(OPT (i− 1,W), pi +OPT (i− 1,W − wi)).
Why Dynamic Programming ?
The given problem is an optimization problem and the above recursion exhibits the overlapping sub problems.
Since, for each choice of i, computing OPT (i,W) requires OPT (i − 1,W). A recursive algorithm may
encounter each sub problem many times in different branches of its recursion tree. Due to the presence
of optimal substructure and overlapping sub problems properties, this is a candidate problem for dynamic
programming.

6

The algorithm: Profit-Knapsack(n,W)

1.Construct a two-dimensional array M [0, . . . , n; 0, . . . ,W]
2.Initialize M [0, w] = 0, ∀ w = 0, . . . ,W
3.for i = 1 to n
4. for w = 0 to W
5. if (w < wi) then
6. M [i, w] = M [i− 1, w]
7. else
8. M [i, w] = max{M [i− 1, w], pi +M [i− 1, w − wi]}

3.1 Trace of the algorithm

Consider the following example: Number of objects, n = 3. Capacity of knapsack, W = 5. Weights of the
objects (x1, x2, x3) are (w1, w2, w3) = (1, 2, 3). Profits of the objects (x1, x2, x3) are (p1, p2, p3) = (3, 2, 1).
Now let us trace the algorithm:

Iteration 1:
Construct a two-dimensional array M of size 4× 6
Initialize M [0, 0] = M [0, 1] = M [0, 2] = M [0, 3] = M [0, 4] = M [0, 5] = 0.
i = 1
w = 0

}
0 < w1 = 1⇒M [1, 0] = M [0, 0] = 0

Iteration 2:
i = 1
w = 1

}
1 ≮ w1 = 1⇒M [1, 1] = max{M [0, 1], p1 +M [0, 0]} = max{0, 3 + 0} = 3

Iteration 3:
i = 1
w = 2

}
2 ≮ w1 = 1⇒M [1, 2] = max{M [0, 2], p1 +M [0, 2− 1]} = max{0, 3 + 0} = 3

Iteration 4:
i = 1
w = 3

}
3 ≮ w1 = 1⇒M [1, 3] = max{M [0, 3], p1 +M [0, 3− 1]} = max{0, 3 + 0} = 3

Iteration 5:
i = 1
w = 4

}
4 ≮ w1 = 1⇒M [1, 4] = max{M [0, 4], p1 +M [0, 4− 1]} = max{0, 3 + 0} = 3

Iteration 6:
i = 1
w = 5

}
5 ≮ w1 = 1⇒M [1, 5] = max{M [0, 5], p1 +M [0, 5− 1]} = max{0, 3 + 0} = 3

Iteration 7:
i = 2
w = 0

}
0 < w2 = 2⇒M [2, 0] = M [1, 0] = 0

Iteration 8:
i = 2
w = 1

}
1 < w2 = 2⇒M [2, 1] = M [1, 1] = 3

Iteration 9:
i = 2
w = 2

}
2 ≮ w2 = 2⇒M [2, 2] = max{M [1, 2], p2 +M [1, 2− 2]} = max{3, 2 + 0} = 3

Iteration 10:
i = 2
w = 3

}
3 ≮ w2 = 2⇒M [2, 3] = max{M [1, 3], p2 +M [1, 3− 2]} = max{3, 2 + 3} = 5

Iteration 11:

7

i = 2
w = 4

}
4 ≮ w2 = 2⇒M [2, 4] = max{M [1, 4], p2 +M [1, 4− 2]} = max{3, 2 + 3} = 5

Iteration 12:
i = 2
w = 5

}
5 ≮ w2 = 2⇒M [2, 5] = max{M [1, 5], p2 +M [1, 5− 2]} = max{3, 2 + 3} = 5

Iteration 13:
i = 3
w = 0

}
0 < w3 = 3⇒M [3, 0] = M [2, 0] = 0

Iteration 14:
i = 3
w = 1

}
1 < w3 = 3⇒M [3, 1] = M [2, 1] = 3

Iteration 15:
i = 3
w = 2

}
2 < w3 = 3⇒M [3, 2] = M [2, 2] = 3

Iteration 16:
i = 3
w = 3

}
3 ≮ w3 = 3⇒M [3, 3] = max{M [2, 3], p3 +M [2, 3− 3]} = max{5, 1 + 0} = 5

Iteration 17:
i = 3
w = 4

}
4 ≮ w3 = 3⇒M [3, 4] = max{M [2, 4], p3 +M [2, 4− 3]} = max{5, 1 + 3} = 5

Iteration 18:
i = 3
w = 5

}
5 ≮ w3 = 3⇒M [3, 5] = max{M [2, 5], p3 +M [2, 5− 3]} = max{5, 1 + 3} = 5

The corresponding table is as follows:

n = 3 0 3 3 5 5 5
n = 2 0 3 3 5 5 5
n = 1 0 3 3 3 3 3
n = 0 0 0 0 0 0 0

w = 0 w = 1 w = 2 w = 3 w = 4 w = 5

Constructing an optimal solution: The value of M [3, 5] in the above table denotes how much maximum
profit can the thief get with the capacity of his knapsack, W , i.e., OPT (3, 5) = M [3, 5]. M [3, 5] is obtained
by M [2, 5], which says us not to include the object x3 but still we are able to get the profit 5 (ref Iteration
18). M [2, 5] is obtained by p2 + M [1, 3], which says us to include the object x2 to get the profit 5 (ref
Iteration 12). M [1, 3] is obtained by p1 +M [0, 2], which says us to include the object x1 to get the profit 5
(ref Iteration 4). Thus, the thief has to take the objects x1 and x2 such that the profit is p1 +p2 = 3+2 = 5.
Hence, the solution set is (x1, x2, x3) = (1, 1, 0), where 1 denotes the presence of the object in the knapsack
and 0 denotes the absence of the object in the knapsack.

Run time of this algorithm is O(nW), where n denotes the number of objects and W denotes the
maximum weight of objects that the thief can put in his knapsack. Though, the run time appears like
polynomial time, it purely depends on the value of W . For example, if W is O(n) then the run time is
polynomial in n and if W is O(2n) then the run time is exponential in n, as we have to construct a matrix
of size (n + 1) × (W + 1). Thus, the run-time of this algorithm depends on W and algorithms of this type
whose run-time includes a variable (in this case W) are known as pseudo-polynomial time algorithms.

4 Optimal Binary Search Tree

The first task in any compilation process of a program is parsing, which scans the program and identifies
the set of keywords and non-keywords. For example, if you mistype int a, b as ant a, b, compiler has to show

8

an error message “Syntax error”. The idea is, for the given set of keywords such as while, do, if and so
on, we should maintain a nice data structure so that when parsing is done it should display the keywords
and non-keywords as quickly as possible. In this section, we shall present a data structure called “Binary
Search Tree (BST)”which helps to minimize the parsing time. For the given set of keywords there are many
BST’s, the objective is to choose a BST that minimizes the search cost. For example, the set of keywords
are {do, if, while} and the possible BST’s are as follows:

While

do

if

P
1

P
2

P
3

q
1

q
0

q
2

q
3

if

whiledo

q
3

q
2

q
1

q
0

P
1

P
2 P

3

if

while

do

q
3

q
2

q
1

q
0

P
1

P
2

P
3

While

if

do

P
1

P
2

P
3

q
2

q
1

q
0

q
3

while

if

do

q
3

q
2q

1

q
0

P
1

P
2

P
3

BST
1 BST

2
BST

3 BST
4

BST
5

Figure 2: All possible BST’s for a set of keywords {do, if, while}

Suppose if p(i) = 1
7 for all i = 1 to 3 and q(i) = 1

7 for all i = 0 to 3, where p(i) denotes the probability of
occurrence of the keyword ai and q(i) denotes the probability of the non-keyword x such that ai < x < ai+1.
Note that q(i) denotes how many times (frequency or probability) syntax error is thrown by the compiler
with respect to x. p(i) denotes how many times (frequency or probability) the key word ai is referred in a
program.
Cost of search for each BST is as follows:

Cost(BST1) =

3∑
i=1

pi×height of pi+

3∑
i=0

qi×(height of qi−1) =
1

7
·1+

1

7
·2+

1

7
·3+

1

7
·3+

1

7
·3+

1

7
·2+

1

7
·1 =

15

7

Cost(BST2) =

3∑
i=1

pi × height of pi +

3∑
i=0

qi × (height of qi − 1) =
1

7
· (1 + 2 + 2) +

1

7
· (2 + 2 + 2 + 2) =

13

7

Cost(BST3) =

3∑
i=1

pi × height of pi +

3∑
i=0

qi × (height of qi − 1) =
1

7
· (1 + 2 + 3) +

1

7
· (1 + 2 + 3 + 3) =

15

7

Cost(BST4) =

3∑
i=1

pi × height of pi +

3∑
i=0

qi × (height of qi − 1) =
1

7
· (1 + 2 + 3) +

1

7
· (1 + 2 + 3 + 3) =

15

7

Cost(BST5) =

3∑
i=1

pi × height of pi +

3∑
i=0

qi × (height of qi − 1) =
1

7
· (1 + 2 + 3) +

1

7
· (1 + 2 + 3 + 3) =

15

7

Clearly, BST2 is optimal, as the search cost is less compared to other BST’s.
Objective: Given a set of identifiers (keywords) {a1, a2, . . . , an} with the constraint a1 < a2 < . . . < an.
Our objective is to construct an Optimal Binary Search Tree (OPT BST), which minimizes the cost of search.

Optimal Substructure:
Given a set of identifiers, how to identify the right BST ?

9

→ To apply dynamic programming, we need to identify the right root.

→ Among {a1, . . . , an}, which ai would be the root.

→ Say ak is the root of an optimal BST, then a1, a2, . . . , ak−1 lie in the left sub tree of the root and
ak+1, . . . , an lie in the right sub tree of the root.

→ Let w(i, j) = q(i) +
j∑

l=i+1

q(l) + p(l)

→ The cost of the BST with ak as the root is calculated using the cost of left subtree and right subtree
plus the increase in cost due to ak. The total cost with ak as the root is:
Cost(l) + Cost(r) + pk + w(0, k − 1) + w(k, n),
which is the cost of left sub tree + cost of right sub tree + pk × 1 + increased cost with respect to the
left sub tree (i.e., w(0, k − 1) since the height increases by one) + increased cost with respect to the
right sub tree i.e., w(k, n) since the height increases by one).

→ If the tree is optimal, then the above expression must be minimum. Hence, Cost(l) must be minimum
over all BST containing a1, a2, . . . , ak−1 and q0, q1, . . . , qk−1. Similarly, Cost(r) must be minimum.
Thus, for the minimum k, the expected cost is
p(k) + c(0, k − 1) + c(k, n) + w(0, k − 1) + w(k, n).
p(k): Cost of the root
c(0, k − 1): cost of left subtree Cost(l), for simplicity we use ’c’ instead of ’cost’
c(k, n): Cost(r)
w(0, k − 1) + w(k, n): Increase in cost due to the increase in height.

Hence, the optimal substructure is c(0, n) = min
1≤k<n

{p(k) + c(0, k − 1) + c(k, n) + w(0, k − 1) + w(k, n)}

Recursive sub problem:
In general for any c(i, j),

c(i, j) = mini<k≤j{c(i, k − 1) + c(k, j) + p(k) + w(i, k − 1) + w(k, j)} = min
i<k≤j

{c(i, k − 1) + c(k, j)}+w(i, j)

c(i, j) can be solved for c(0, n) by first computing all c(i, j) such that j − i = 1, next we can compute all
c(i, j) such that j − i = 2 and so on.
Note: c(i, i) = 0 and w(i, i) = q(i) for all 0 ≤ i ≤ n. Also, w(i, j) = p(j) + q(j) + w(i, j − 1)

Why Dynamic Programming ? The given problem is an optimization problem and it is clear from the
above discussion that this problem exhibits the overlapping sub problem and optimal substructure properties.
Since, for each choice of i and j, computing c(i, j) requires c(i, k − 1) and c(k, j), i < k ≤ j.

10

The algorithm: OPT BST(p, q, n)

Given n distinct identifiers a1 < a2 < . . . < an and probabilities p[i] and q[i] this algorithm
computes the cost c[i, j] of optimal binary search trees tij for identifiers ai+1, . . . , aj . It also
computes r[i, j], the root of tij and w[i, j], the weight of tij .
1.for i = 0 to n− 1 do
2. w[i, i] = q[i]; r[i, i] = 0; c[i, i] = 0 /* Optimal BST with one node */
3. w[i, i+ 1] = q[i] + q[i+ 1] + p[i+ 1]
4. r[i, i+ 1] = i+ 1
5. c[i, i+ 1] = q[i] + q[i+ 1] + p[i+ 1]
6.w[n, n] = q[n]; r[n, n] = c[n, n] = 0

6.5 Run two for loops and update w(i, j) = p(j) + q(j) + w(i, j − 1)

7.for m = 2 to n do
8. for i = 0 to n−m do
9. j = i+m
10. Find a k in the range i < k ≤ j that minimizes c[i, k − 1] + c[k, j]
11. Compute c[i, j] = w[i, j] + c[i, k − 1] + c[k, j]
12. r[i, j] = k

4.1 Trace of the algorithm

Consider the following example:
(a1, a2, a3, a4) = (cout, float, if, while) with the following probabilities:

i 0 1 2 3 4

p(i) 1
20

1
5

1
10

1
20

q(i) 1
5

1
10

1
5

1
20

1
20

Now, let us trace the algorithm for the above example:

Iteration 1: (first loop)
w[0, 0] = q[0] = 1

5 ; r[0, 0] = c[0, 0] = 0
w[0, 1] = p[1] + q[1] + w[0, 0] = 1

20 + 1
10 + 1

5 = 0.05 + 0.1 + 0.2 = 0.35
c[0, 1] = min{c[0, 0] + c[1, 1]}+ w[0, 1] = 0.35 and r[0, 1] = 1

Iteration 2: (first loop)
w[1, 1] = q[1] = 1

10 = 0.1; r[1, 1] = c[1, 1] = 0
w[1, 2] = p[2] + q[2] + w[1, 1] = 0.2 + 0.2 + 0.1 = 0.5
c[1, 2] = min{c[1, 1] + c[2, 2]}+ w[1, 2] = 0.5 and r[1, 2] = 2

Iteration 3: (first loop)
w[2, 2] = q[2] = 1

5 = 0.2; r[2, 2] = c[2, 2] = 0
w[2, 3] = p[3] + q[3] + w[2, 2] = 0.1 + 0.05 + 0.2 = 0.35
c[2, 3] = min{c[2, 2] + c[3, 3]}+ w[2, 3] = 0.35 and r[2, 3] = 3

Iteration 4: (first loop)
w[3, 3] = q[3] = 1

20 = 0.05; r[3, 3] = c[3, 3] = 0
w[3, 4] = p[4] + q[4] + w[3, 3] = 0.05 + 0.05 + 0.05 = 0.15
c[3, 4] = min{c[3, 3] + c[4, 4]}+ w[3, 4] = 0.15 and r[3, 4] = 4

11

w[4, 4] = q[4] = 1
20 = 0.05; r[4, 4] = c[4, 4] = 0

Iteration 5: (second loop when j − i = 2)
m = 2; i = 0; j = 0 + 2 = 2:
w[0, 2] = p[2] + q[2] + w[0, 1] = 0.2 + 0.2 + 0.35 = 0.75
c[0, 2] = min{c[0, 0] + c[1, 2], c[0, 1] + c[2, 2]}+ w[0, 2] = min{0.5, 0.35}+ 0.75 = 1.1 and r[0, 2] = 2

Iteration 6: (second loop when j − i = 2)
m = 2; i = 1; j = 1 + 2 = 3:
w[1, 3] = p[3] + q[3] + w[1, 2] = 0.05 + 0.1 + 0.5 = 0.65
c[1, 3] = min{c[1, 1] + c[2, 3], c[1, 2] + c[2, 3]}+ w[1, 3] = min{0.35, 0.5}+ 0.65 = 1.0 and r[1, 3] = 2

Iteration 7: (second loop when j − i = 2)
m = 2; i = 2; j = 2 + 2 = 4:
w[2, 4] = p[4] + q[4] + w[2, 3] = 0.05 + 0.05 + 0.35 = 0.45
c[2, 4] = min{c[2, 2] + c[3, 4], c[2, 3] + c[4, 4]}+ w[2, 4] = min{0.15, 0.35}+ 0.45 = 0.6 and r[2, 4] = 3

Iteration 8: (second loop when j − i = 3)
m = 3; i = 0; j = 0 + 3 = 3:
w[0, 3] = p[3] + q[3] + w[0, 2] = 0.1 + 0.05 + 0.75 = 0.9
c[0, 3] = min{c[0, 0] + c[1, 3], c[0, 1] + c[2, 3], c[0, 2] + c[3, 3]}+ w[0, 3] = min{1.0, 0.35 + 0.35, 1.1}+ 0.9 = 1.6
and r[0, 3] = 2

Iteration 9: (second loop when j − i = 3)
m = 3; i = 1; j = 1 + 3 = 4:
w[1, 4] = p[4] + q[4] + w[1, 3] = 0.05 + 0.05 + 0.65 = 0.75
c[1, 4] = min{c[1, 1] + c[2, 4], c[1, 2] + c[3, 4], c[1, 3] + c[4, 4]}+w[1, 4] = min{0.6, 0.5 + 0.15, 1.0}+ 0.75 = 1.35
and r[1, 4] = 2

Iteration 10: (second loop when j − i = 4)
m = 4; i = 0; j = 0 + 4 = 4:
w[0, 4] = p[4] + q[4] + w[0, 3] = 0.05 + 0.05 + 0.9 = 1.0
c[0, 4] = min{c[0, 0]+c[1, 4], c[0, 1]+c[2, 4], c[0, 2]+c[3, 4], c[0, 3]+c[4, 4]}+w[0, 4] = min{1.35, 0.35+0.6, 1.1+
0.15, 1.6}+ 1.0 = 1.95 and r[0, 4] = 2

Constructing an optimal solution:
The computation of c[0, 4] says that the root of the OPT BST is a2 i.e., float (since the value of r[0, 4] is
2). Hence, the left sub tree for a2 contains a1 and the right sub tree contains a3 and a4. The left sub tree
of a2 has only one node, so the left node of a2 is a1 i.e., cout. The right sub tree of a2 has two nodes, so to
fix the right node of a2 (which is either a3 or a4), we look at c[2, 4], which says the right node of a2 is a3
i.e., if (since, r[2, 4] = 3). Thus, the left sub tree for the node if is NULL and the right sub tree contains
a4 i.e., while (ref Figure 3).

12

float

ifcout

OPT BST

while

Figure 3: Optimal BST for the given example

Run time analysis
Let n denotes the the number of keywords. The time taken in first loop is n− 2 + 1 + 1 = O(n). The time

taken in second loop is as follows:

m = 2⇒ n− 2 + 1 + 1 = n
m = 3⇒ n− 3 + 1 + 1 = n− 1
m = 4⇒ n− 2 + 1 + 1 = n− 2
...
m = n⇒ n− n+ 1 = 1

1 + 2 + . . .+ n = O(n2).

To find minimum k we incur O(m) time (because, j− i = m). i.e., O(n) time. So, the total time complexity
is O(n2) ·O(n) = O(n3).
A simple brute force (trivial) algorithm incurs Ω(x), where x denotes the number of BST’s which is again
close to catalan number.

5 Traveling Salesman Problem

Input: A directed graph G = (V,E) with edge costs.
Objective: To find a directed tour of minimum cost by visiting each vertex exactly once (except the start
node)

Note:

1. Every tour starting at vertex ‘i’consists of an edge < i, k > for some k ∈ V \{1} and a path from vertex
k to vertex 1. The path from k to 1 goes through each vertex in V \{1, k} exactly once.

2. If the path (tour) is optimal, then the path from k to 1 must be a shortest k to 1 path going through
all vertices in V \{1, k}

3. Hence, the principle of optimality holds.

Notation: g(i, S) denotes the length of a shortest path starting at vertex i, going through all vertices in S
and terminating at vertex 1. Let Cij denotes the edge cost between i and j. Cij > 0 for all i, j and Cij =∞
if (i, j) /∈ E(G).

Optimal Substructure:
Our goal is to find g(1, V \{1}). From the principle of optimality it follows that,
g(1, V \{1}) = min

2≤k≤n
{C1k + g(k, V \{1, k})}

Recursive sub problem:
The principle of optimality helps in identifying sub problems, sub subproblems, etc., To solve g(1, V \{1})
we need to know g(k, V \{1, k}) for all choices of k. This can be calculated using,

13

g(i, S) = min
j∈S;i6=j

{Cij + g(i, S\{j})}

Note: g(i, ∅) = Ci1, 1 ≤ i ≤ n, which says from i without going through any set reach vertex 1.

Why Dynamic Programming ? The given problem is an optimization problem and the above recur-
sion exhibits the overlapping sub problems. Since, for each choice of i and S, computing g(i, S) requires
g(i, S\{j}), j ∈ S. A recursive algorithm may encounter each sub problem many times in different branches
of its recursion tree. This property of overlapping sub problems is the reason for applying dynamic program-
ming.

The algorithm: TSP(n,C)

Given a directed graph with n vertices, directed edges between every two vertices and costs for each edge Cij .
Let S denotes the set of all subsets of vertices {2, 3, . . . , n}. This algorithm computes g(i, S) the shortest
path starting at vertex i, going through all vertices in S and terminates at vertex i. It also computes J(i, S),
which gives the next vertex in the shortest path from i .
1.for i = 1 to n do
2. g(i, ∅) = Ci1; J(i, ∅) = 0;
3.for m = 1 to n− 1 do
4. for i = 2 to n do
5. Choose all j ∈ S such that i 6= j and | S\{j} |= m, from all such j, find a j that minimizes
Cij + g(i, S\{j})
6. Compute g(i, S) = Cij + g(j, S\{j})
8. J(i, S) = j
9.Find a k, 2 ≤ k ≤ n, that minimizes C1k + g(k, V \{1, k}). i.e., find g(1, V \{1}).
10.J(1, V \{1}) = k

5.1 Trace of the algorithm

Consider the following directed graph:

1 2

34

5

10

15

20 9

10

6

13

12

8

8

9

The corresponding cost matrix is Cij =

0 10 15 20
5 0 9 10
6 13 0 12
8 8 9 0

14

Now, let us trace the algorithm for the above graph:

Iteration 1: | S |= 0
Now, S = ∅:
g(1, ∅) = C11 = 0
g(2, ∅) = C21 = 5
g(3, ∅) = C31 = 6
g(4, ∅) = C41 = 8

Iteration 2: | S |= 1
Now, increase the size of S by one.
g(2, {3}) = C23 + g(3, ∅) = 9 + 6 = 15; J(2, {3}) = 3
g(2, {4}) = C24 + g(4, ∅) = 10 + 8 = 18; J(2, {4}) = 4
g(3, {2}) = C32 + g(2, ∅) = 13 + 5 = 18; J(3, {2}) = 2
g(3, {4}) = C34 + g(4, ∅) = 12 + 8 = 20; J(3, {4}) = 4
g(4, {2}) = C42 + g(2, ∅) = 8 + 5 = 13; J(4, {2}) = 2
g(4, {3}) = C43 + g(3, ∅) = 9 + 6 = 15; J(4, {3}) = 3

Iteration 3: | S |= 2
Now, the size of S is two.
g(2, {3, 4}) = min{C23 + g(3, {4}), C24 + g(4, {3})} = min{9 + 20, 10 + 15} = 25; J(2, {3, 4}) = 4
g(3, {2, 4}) = min{C32 + g(2, {4}), C34 + g(4, {2})} = min{13 + 18, 12 + 13} = 25; J(3, {2, 4}) = 4
g(4, {2, 3}) = min{C42 + g(2, {3}), C43 + g(3, {2})} = min{8 + 15, 9 + 18} = 23; J(4, {2, 3}) = 2

Iteration 4: | S |= 3
Now, the size of S is three.
g(1, {2, 3, 4}) = min{C12+g(2, {3, 4}), C13+g(3, {2, 4}), C14+g(4, {1, 3})} = min{10+25, 15+25, 20+23} =
35; J(1, {2, 3, 4}) = 2

Constructing an optimal solution:
The computation of g(1, {2, 3, 4}) says that we have to reach the vertex 2 from 1 (since the value of
J(1, {2, 3, 4}) is 2). The computation of g(2, {3, 4}) says that we have to reach the vertex 4 from 2 (since
the value of J(2, {3, 4}) is 4). Similarly, the computation of g(4, {3}) says that we have to reach the vertex
3 from 4 (since the value of J(4, {3}) is 3). Thus, the required tour with minimum cost is 1→ 2→ 4→ 3→ 1.

Run time analysis
Let N denotes the number of g(i, S) that have to be computed before g(1, V \{1}). The number of distinct

sets S of size p not including 1 and i is

(
n− 2
p

)
. For each value of S, there are (n − 1) choices for i.

Therefore, N =
n−2∑
p=0

(n−1)

(
n− 2
p

)
= (n−1)

[(
n− 2

0

)
+

(
n− 2

1

)
+ . . .+

(
n− 2
n− 3

)
+

(
n− 2
n− 2

)]
= (n− 1)2n−2

To compute g(i, S), for each choice of k, we make (k − 1) comparisons to identify the minimum j at each
g(i, S). i.e., O(k) comparisons. So, the total time complexity is:[

(n− 1) · 2n−2 + 1
]
·O(k) (1 denotes the effort spend in level one)

= (n− 1) · 2n−2 ·O(n) = O(2n · n2).

Note that, the trivial algorithm for this problem takes O(n!) (Since, the number of different TSP tours =
number of branches = O((n− 1)!)).

15

g(1,{2,3,4}) = 35

g(2,{3,4}) = 25 g(3,{2,4}) = 25 g(4,{2,3}) = 23

g(3,{4}) = 20 g(4,{3}) = 15 g(2,{4}) = 18 g(4,{2}) = 13 g(2,{3}) = 15 g(3,{2}) = 18

g(4,{ }) = 8 g(3,{ }) = 6 g(4,{ }) = 8 g(2,{ }) = 5 g(3,{ }) = 6 g(2,{ }) = 5

{ } represents the empty set

Number of elements in leaves = 6
 = The value of N when p = 0

Number of elements in this level = 6
 = The value of N when p = 1

Number of elements in this level = 3
 = The value of N when p = 2

J = 2

J = 4

J = 3

The required TSP is 1 -------------> 2 ----------------> 4 ---------------> 3 -------------------> 1
Cost = 10 Cost = 10 Cost = 9 Cost = 6

Figure 4: A tree representation for the example given in trace, with the values of N at each level.

6 Conclusion

In this lecture, we have witnessed the power of dynamic programming through five classical problems. Due
to the presence of optimal substructure and overlapping subproblem properties, a considerable improvement
in the run time for all the case studies discussed which we summarize below by comparing with its trivial
algorithm.

Case Study Run time of Run time of
trivial algorithm dynamic programming

Assembly line scheduling O(2n) O(n)
OPT Matrix Chain Multiplication O(4n) O(n3)
Knapsack problem O(2n) O(nW)
Optimal BST O(4n) O(n3)
TSP O(nn) O(n2 · 2n)

Acknowledgements: Lecture contents presented in this module and subsequent modules are based
on the following text books and most importantly, author has greatly learnt from lectures by algorithm
exponents affiliated to IIT Madras/IMSc; Prof C. Pandu Rangan, Prof N.S.Narayanaswamy, Prof Venkatesh
Raman, and Prof Anurag Mittal. Author sincerely acknowledges all of them. Special thanks to Teaching As-
sistants Mr.Renjith.P and Ms.Dhanalakshmi.S for their sincere and dedicated effort and making this scribe
possible. Author has benefited a lot by teaching this course to senior undergraduate students and junior
undergraduate students who have also contributed to this scribe in many ways. Author sincerely thank all
of them.

References

[1] H.Cormen, T., C. E.Leiserson, R. L.Rivest and C. Stein: Introduction to Algorithms 3rd Edition.
McGraw-Hill Higher Education, (2001).

[2] E.Horowitz, S.Sahni, S.Rajasekaran, Fundamentals of Computer Algorithms, Galgotia Publications.

16

[3] Sara Baase, A.V.Gelder, Computer Algorithms, Pearson.

17

