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Functions and Infinite Sets

Objective: We shall introduce functions, special functions and related counting problems. We
shall see the importance of functions in the context of infinite sets and discuss infinite sets in
detail. Further, we introduce the notion counting in the context of infinite sets.

Revisit: Relations

Consider the following relations and its graphical representation, and this representation is dif-
ferent from the one we discussed in the context of relations. A = B = {1, 2, 3, 4, 5}, R1 =
{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5)}
A = B = {1, 2, 3}, R2 = {(1, 1), (2, 2), (3, 3)}
A = B = {1, 2, 3}, R3 = {(1, 1), (2, 2), (2, 3)}
A = B = {1, 2, 3}, R4 = {(1, 1), (2, 1), (3, 1)}
We define special relations; relations satisfying the following properties.
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Fig. 1: (a),(b),(c),(d) represent relations using two partitions.

1. Property P1: ∀a ∈ A ∃!b ∈ B [(a, b) ∈ R]

2. Property P2: relation satisfying P1 and @a ∈ A @b ∈ A ∧ a 6= b ∧ ∀c ∈ B [(a, c) ∈
R ∧ (b, c) ∈ R]

3. Property P3: relation satisfying P1 and ∀b ∈ B ∃a ∈ A[(a, b) ∈ R]

A binary relation R satisfying P1 is known as a function in the theory of relations. Similarly,
the one satisfying P2 is known as one-one functions and the one satisfying P3 is known as
onto functions.

Definition 1 (Function) Let A and B be non-empty sets. A function or a mapping f from
A into B, written as f : A→ B, where every element a ∈ A is mapped to a unique element
b ∈ B.



Definition 2 (One-one function/Injective) A function is said to be injective if for every
element in the range there exists a unique pre-image. i.e., no two elements in the domain
map to same element in the co-domain.

Definition 3 (Onto function/Surjective) A function is said to be surjective if for every
element in co-domain there exists a pre-image.

Definition 4 (Bijective) A function is said to be bijective if it is both one-one and onto
function.

From the Figure 1, we can observe that

(a) is not satisfying property P1 because elements 1 and 2 in A are mapped to two ele-
ments in B which is a forbidden structure according to property P1 and elements 4 and 5
in A is not mapped to any element in B. Since R1 is not satisfying the property P1, it does
not satisfy P2 and P3 as well. Therefore, (a) is not a function.

(b) is satisfying properties P1, P2 and P3.

(c) is satisfying properties P1 and P3 but not P2 because 2 and 3 in A are mapped to
same element in B which is forbidden according P2.

(d) satisfies Property P1 but not P2 because 1, 2, 3 in A is mapped to same element in
B which is forbidden according to P2 and it does not satisfy P3 because there exist elements
2 and 3 in B which is not mapped to any elements in A which is forbidden according to
property P3.

Note:
1. The element b ∈ B is called the image of a under f and is written as f(a).
2. If f(a) = b then a is called the pre-image of b under f .
3. A is called the domain of f and f(A) = {f(a) | a ∈ A} is called the range of f . B is called
the co-domain of f .
4. Examples of functions:

a) Domain = Set of apples and Range = weight of apples.
b) Domain = Set of students and Range = CGPA of students.

5. Every function is a relation but the converse is not true.
6. For every element a ∈ A, there exists an image f(a). i.e., f(a) is well defined.
7. For one-one functions, |B| ≥ |A| and for onto functions |A| ≥ |B|.
8. For functions that satisfy both one-one and onto, |B| = |A|.

Things to know:
1. Is there a function for which A = ∅ and B 6= ∅ ? Yes, an empty function.
2. Is there a function for which A 6= ∅ and B = ∅ ? No.
3. Is there a function for which A = ∅ and B = ∅ ? Yes, void function.
• Let A = B = N(set of natural numbers).

- Give an example of a function f : N → N , which is one-one and not onto ? f(x) = x+1
- Give an example of a function f : N → N , which is not one-one but onto ? f(x) = dx2 e
- Give an example of a function f : N → N , which is one-one and onto ? f(x) = x
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Fig. 2: (a) Not one-one and not onto (b) one-one but not onto (c) onto but not one-one (d)
one-one and onto

• Let A = B = I(set of integers).
- Give an example of a function f : I → I, which is one-one and not onto ? f(x) = 2x
- Give an example of a function f : I → I, which is not one-one but onto ? f(x) = dx2 e.
- Give an example of a function f : I → I, which is one-one and onto ? f(x) = x

• Give an example bijective function f : (0, 1)→ (4, 5) in real numbers ? f(x) = x+ 4.

Counting functions:

Consider two sets A and B and a relation R ⊆ A×B and |A| = n, |B| = m.
Number of functions (Number of R satisfying P1):

am

a2

a1

bm

b2

b1
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The element a1 in A can be mapped to m elements in B, a2 in A can also be mapped to m
elements in B. Similarly each element in A can be mapped to m elements in B. Since each
element is having m choices to be mapped. Therefore,
Number of functions from A to B =Number of Relations R ⊆ A×B satisfying P1
=m×m×m× . . .×m(n times) = mn or in general, |B||A|.

Number of one-one functions (Number of R satisfying P2):

am

a2

a1

bm

b2

b1

A B
(a) R

b

a

c

A B
(b)

forbidden structure forP2

For property P2, note that m ≥ n, otherwise one-one function does not exist.
The element a1 has m possibilities, the element a2 has (m− 1) possibilities, (m− 1) because
except the element in B which was mapped to a1, similarly an will have (m − (n − 1))
possibilities.

a1 a2 a3 . . . an
has m possibilities has m− 1 possibilities has m− 2 possibilities . . . has m− (n− 1)
b1, b2, . . . , bm suppose bi has been B \ {bi} suppose bj has been selected . . . . . .

selected for a1 then for a2 then B \ {bi, bj}

=m×m− 1×m− 3× . . .×m− (n− 1)

=
m×m− 1×m− 3× . . .×m− (n− 1)× (m− n)× . . .× 3× 2× 1

(m− n)× . . .× 3× 2× 1

=
m!

(m− n)!
=mPn = n!×mCn

• Let | A |= n and | B |= m. The number of different one-one functions are mCn×n! = mPn .

Remarks:
1. Note that any one-one function from A to B is a bijective function from A to f(A).
2. Counting one-one functions is equivalent to selecting n elements out of m elements from
codomain.
3. Counting one-one functions is equivalent to choosing n elements out of m elements from
codomain and considering all possible bijective functions on a set of size n.
4. Let | A |= n and | B |= m. If X = {R | R is a relation defined w.r.t (A,B)} and
Y = {R | R is a function w.r.t (A,B)} then, | X |≥| Y | (Since, | X |= 2mn and | Y |= mn).

Number of onto functions (Number of R satisfying P3):

We shall next count the number of onto functions using PIE.
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Let | A |= n and | B |= m.
Number of onto functions = Number of functions - Number of functions that are not onto.

The number of functions from A to B = mn

Let B = {a1, a2, . . .}. The number of functions between A and B in which there is no pre-
image for a1 = (m− 1)n. Similarly, for a2, a3, . . .

Therefore, the total number of functions in which there is no pre-image for ai = mc1(m−1)n.

Similarly, the total number of functions in which there is no pre-image for (a1, a2) = (m−2)n.
Therefore, for any two (ai, aj) = mc2(m− 2)n.

The function not having pre-image for both a1 and a2 is counted thrice in the above count-
ing. Once with respect a1 (function not having pre-image for a1), counted again with respect
to a2 (function not having pre-image for a2) and counted for the third time when seen as
a function not having pre-image for both (a1, a2). However, the function has to be counted
exactly once. Due to this reason, we employ principle of inclusion and exclusion and hence,
the count is 2− 1 = 1.

Thus, the number of onto functions =
mn −

[
mc1(m− 1)n −mc2(m− 2)n +mc3(m− 3)n − . . .+ (−1)m−1mcm−1(1)

n
]
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An invitation to infinite sets

Motivation:
- Many interesting sets such as
(i) Set of prime numbers
(ii) Set of C-programs
(iii) Set of C-programs with exactly three statements
are infinite in nature.

- Between I and N , which set is bigger ?
- Between I and N ×N , which set is bigger ?
- Is [0, 1] is bigger than R ?
- Can we list all C-programs ?

Definition 5 (Finite) A set A is finite if there exists a n ∈ N , n-represents the cardinality
of A such that there is a bijection f : {0, 1, . . . , n− 1} → A. A is infinite if A is not finite.

Definition 6 (Infinite) Let A be a set. If there exists a function f : A→ A such that f is
an injection and f(A) ⊂ A then A is infinite.

• Let B be a finite set, B = {1, 2, . . . , 10}. Can you establish a 1-1 function f : B → B such
that f(B) ⊂ B ? No.

• Can you establish a 1-1 function f : N → N such that f(N) ⊂ N ? Yes, f(x) = x+ 1.

• Every 1-1 function from f : B → B is also a bijection from B → B if B is finite.

Problem 1: Show that N is infinite.

Proof by contradiction: Suppose N is finite. By definition, there exists n, n represents the
cardinality of N such that f(n) = an. Let K = MAX{f(0), f(1), . . . , f(n − 1)} + 1. There
does not exist a x ∈ {0, 1, . . . , n− 1} such that f(x) = k.
Therefore, f is not onto and thus, f is not a bijection. Hence, our assumption is wrong and
N is infinite.

Problem 2: Show that R is infinite.

Proof: To prove R is infinite, establish a function f : R → R such that f is 1-1 and
f(R) ⊂ R.
Consider f : R → R such that f(x) = x+ 1, if x ≥ 0 and f(x) = x, if x < 0. This function
f is 1-1 but not onto (Since, 0 does not have a pre-image) and f(R) ⊂ R. Hence, R is infinite.

Problem 3: Let
∑

= {a, b} and f :
∑∗ →∑∗. Show that

∑∗ is infinite.
Proof: To prove

∑∗ is infinite, establish a function f :
∑∗ → ∑∗ such that f is 1-1

and f(
∑∗) ⊂∑∗.

Consider f :
∑∗ → ∑∗ such that f(x) = ax. The elements ε, b, ba, bb, . . . will not have a

pre-image. Therefore f is not onto but 1-1 and f(
∑∗) ⊂∑∗. Hence, ∑∗ is infinite.

Problem 4: Show that [0, 1] is infinite.
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Proof: Consider f : [0, 1] → [0, 1] such that f(x) = x
2 . This function f is 1-1 but not

onto (Since, (12 , 1] does not have a pre-image) and f([0, 1]) ⊂ [0, 1]. Hence, [0, 1] is infinite.

Claim: 1 Let A′ be a subset of A. If A′ is infinite then A is infinite.

Proof: Given A′ is infinite. Therefore, there exists a function g : A′ → A′ such that g
is 1-1 and g(A′) ⊂ A′.
Consider a function f : A→ A such that

f(x) = x, if x ∈ A\A′
f(x) = g(x), if x ∈ A′.

The function f is also 1-1 and f(A) ⊂ A (Since, g is 1-1 and g(A′) ⊂ A′). Thus, A is
infinite.

Corollary: Every subset of a finite set is a finite set.

Claim 2: Let f : A→ B be an injection. If A is infinite then B is infinite.

Proof: Since f is 1-1 and A is infinite, f(A) is infinite. By previous claim, B is infinite
(since, f(A) ⊆ B).

Another proof: In this proof, we shall present the mapping as well. Since f : A → B
is one-one, f is bijective between A and f(A). Note that inverse of a function f exists iff f
is bijective. Thus, there exists an inverse f−1 from f(A) to A. Further, there exists one-one
function h : A→ A such that h(A) ⊂ A. We shall now present a one-one function g : B → B
such that g(B) ⊂ B.

g(x) = x if x ∈ B \ f(A).
g(x) = f ◦ h ◦ f−1(x) if x ∈ f(A).

Note that f ◦ h ◦ f−1 is one-one from B to B. Further, f ◦ h ◦ f−1(B) is f ◦ h(A). Since h
is one-one, h(A) ⊂ A and f is also one-one, therefore, f ◦ h ◦ f−1(B) 6= B. Therefore, g is a
function from B to B such that g(B) ⊂ B.

Problem 5: A is infinite. Show that (i) P (A), power set of A is infinite. (ii) A ∪ B is
infinite. (iii) A×B is infinite. (iv) AB, the set of all functions from B to A, is infinite.

Solutions:
(i) Consider a function f : A → P (A) such that f(x) = {x}. The function f is 1-1 but not
onto i.e.,A ⊆ P (A). Thus, P (A) is infinite. (by claim 2)

(ii) We know that, A ⊂ A ∪B. Since A is infinite, A ∪B is infinite (by claim 1).

(iii) Consider a function f : A → A × B such that f(x) = (x, a) for some a ∈ B. Clearly,
the function f is 1-1 but not onto. Thus, A×B is infinite. (by claim 2)

(iv) Every element in AB is a function from B → A. Consider a function f : A → AB
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such that f(x) = g, g is a function from B → A such that g(b) = x, ∀ b ∈ B. This function
f is 1-1 but not onto. Thus, AB is infinite. (by claim 2)

Definition 7 (Countable) A set A is countable if A is finite or if A has an enumeration
(Listing elements of A) or if there exists a bijection from N to A.

• A set A is said to be Countably infinite if there exists a bijection from N to A or if there
exists an enumeration.
• Countable sets are either countably finite or countably infinite.
• | A |=| B | if and only if there exists a bijection from A to B.
• |A| = |B| iff there exists an injection from A to B and there exists an injection from B to A.

Problem 6: Prove: | N |=| I |
Solution 1: Consider the function f : N → I such that f(x) = −(x+1)

2 , if x = 2k+1, for some
integer k and f(x) = x

2 , if x = 2k, for some integer k. Clearly, this function is 1-1 and onto.
Thus, | N |=| I |. We assume that the natural number set has ’0’ in it and it is mapped to
’0’ in the integer set.

Problem 7: Prove that the set P of prime numbers is infinite.
Solution: We know that for every prime number x, there exists a prime number y > x (refer
to PMI scribe). Therefore, we establish a map between N and the set of prime numbers.
f : N → P such that f(i) = Pi. i.e., ith natural number maps to ith prime number Pi.
Therefore, there exists an enumeration and hence P is countably infinite.

Problem 8: Prove that the set of positive rational numbers, Q+, is infinite.
Solution: We below enumerate(list) elements of Q+ in a systematic way as illustrated in
the Figure. We then establish a bijective function from N to Q+ by following the arrows as
illustrated in the figure. This yields an enumeration and a mapping to N , therefore Q+ is
infinite. Thus, Q+ is countably infinite.

Also, it is clear that Q− has a bijective mapping to N .

Problem 9: Prove that the cardinality of
∑∗ is countably infinite.

Solution: We shall establish this claim by listing the elements of
∑∗ using standard ordering.

i.e., we list length one strings, followed by length two strings, and so on. Strings having same
length will be listed as per lexicographic ordering. An illustration as per standard ordering
is shown below.

Problem 10: Prove that the number of C-programs is countably infinite.
Solution: Let

∑
= {a, b, . . . , z, A,B, . . . , Z, $, {, }, \, . . .} and

∑∗ = {ε, String1, String2, . . .}.
Note that

∑
is precisely the set of keys available in a key board (ASCII characters). It is

easy to see that every C-program is an element in
∑∗, i.e, imagine the case where we write

a C-program in horizontal fashion instead of vertical fashion. Also, we do not concerned
about whether the C-program is syntactically correct or not, will the program halt, whether
it is a meaningful program, etc. We know that

∑∗ is countably infinite, thus, the number of
C-programs is countably infinite. That is, one can associate a C program with every element
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Problem 11: Prove that the number of C-programs with exactly 3 statements is countably
infinite ?
Solution:
Let program-1 be read x; x = x + 1; print x;, program-2 be read x; x = x + 2; print x;, . . .
, program-∞ be read x; x = x+∞; print x;. Clearly, the set of programs (Program-1,...) is
infinite. We further know from the previous claim that the number of C-programs is count-
ably infinite. Since this set is only a subset of all C-programs, implies that, the number of
C-programs with exactly 3-statements is countably infinite.

Problem 12: Prove that N ×N is countably infinite ?
Solution: Consider an infinite matrix with rows and columns representing the elements of N .
The row i and column j represents the element (i, j) ∈ N ×N . The argument similar to Q+

can be given to enumerate the elements of N ×N and associate them to the corresponding
natural number. Hence, N ×N is countably infinite.

Remarks:
1. One can establish N ×N ×N is countably infinite.
2. I ×N is countably infinite and any rational number of the form p

q is an element (p, q) ∈
I ×N . Therefore, the set of rational numbers is countably infinite.
3. For all countable sets, there exists an ordering and hence they are well ordered sets.
4. The principle of mathematical induction can be applied to any countable set as the notion
successor is well defined.
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5. (Q+,≤), (Q−,≥) are well ordered sets.

Uncountable Sets

In earlier sections, we introduced infinite sets and techniques for showing a set is infinite.
Further, we also presented an approach to count infinite sets (countably infinite). We now
ask; is every set countable, i.e., either countably finite or countably infinite. We answer this
in negative and show that there are uncountable sets. We next introduce cantor’s famous
technique, diagonalization technique using which we show that the set [0, 1], the set of real
numbers between 0 and 1 is uncountable.

Problem 12: Show that [0, 1] uncountable
Solution: We present a proof by contradiction. Suppose [0, 1] is countable then there ex-
ists an enumeration, i.e., listing of elements in [0, 1] in a systematic way; ENUM: x1, x2, . . ..
Further, there exists a bijection from N to ENUM. Let

x1 = 0.x11x12x13x14 . . .
x2 = 0.x21x22x23x24 . . .
x0 = 0.x31x32x33x34 . . .

. . .

We now show that the above listing is incomplete by exhibiting an element y ∈ [0, 1] and y
is not listed in ENUM. Consider y = 0.y1y2y3y4 . . ., such that yi = 3, if xii = 2 and yi = 2, if
xii 6= 2. Clearly, y ∈ [0, 1] and any xi and y will differ at one position (at least one, position
i itself). Therefore, y is not enumerated in x1, x2, . . .. Thus, ENUM is incomplete and our
assumption that [0, 1] is countable is wrong. Therefore, [0, 1] uncountable.
Note:
1. Since [0, 1] is uncountable, the set of real numbers R is uncountable. The above argument
can be extended for any real line [a, b] to show that [a, b] is uncountably infinite.
2. For uncountable sets, there does not exist an enumeration, i.e., there is no notion of first
element, second element, etc.

Claim: Countable union of countable sets is countable.

Proof: Let A1, A2, . . . , be a set of countable sets. Since each set Ai is countable, then
there exists an enumeration of Ai. Construct a matrix with the first row listing the elements
of A1, the second row listing the elements of A2, and so on. Now, similar to the proof showing
the set of rational numbers is countable, enumerate the elements of the constructed matrix
to get a natural mapping to the set of natural numbers. Therefore, the claim follows.

Problem 13: Is irrational numbers countable ?.
Solution:
Assume that irrational numbers are countable. Since rational numbers are countable and by
the above claim, union of rational numbers and irrational numbers is countable, however, this
is precisely the set of real numbers, which is a contradiction. Thus, the set of all irrational
numbers is uncountable.
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Remarks:
1. For all countably infinite sets (N,Q+,

∑∗, ...), the set consists of finite strings. That is,
an infinite set of finite strings.
2. For irrational numbers, there is no decimal expansion that terminates. This implies that
the expansion is always infinite. The set of irrational numbers is an example infinite set in
which each string is infinite.
3. For all uncountable sets, there exists a subset which is infinite containing infinite length
strings.
4. The set of C programs is an example infinite set in which each program is of finite length
and hence, an element of

∑∗.
Problem 14: Given that

∑∗ is countably infinite. Is P (
∑∗) countably infinite ?

Solution: Suppose P (
∑∗) is countably infinite.

Since
∑∗ is countably infinite we can enumerate

∑∗ as x1, x2, x3, . . .. Since P (∑∗) is count-
ably infinite, there exists an enumeration A1, A2, A3, . . ., where each Ai is subset of

∑∗.
We now construct a matrix with row representing the sets (A′is) and column representing
x ∈

∑∗. Table entries as illustrated in Figure are filled as follows; if you find xi in Aj , place
1 in the corresponding cell, else place 0.
We now show that there is a subset in

∑∗ which is not listed as part of the enumera-

x1        x2         x3         x4   . . .

A1

A2

A3

.

.

.

 1         0           1           0 . . .

 0         1           1            0 . . .

 1         1           0            1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5: Listing P (
∑∗) and ∑∗ in a Matrix

tion. Choose B = {xj | (Aj , xj) = 0}. That is, include xj in B if xj is not in Aj . Clearly,
B ∈ P (

∑∗) but not listed as part of the enumeration. B differs from each Ai in at least one
element (diagonal element). Therefore, the enumeration is incomplete. Thus our assumption
is wrong. Hence, P (

∑∗) is uncountable.
Problem 15: How many computational problems are there? Is it countable/uncountable.

Solution: 1
Let problem-1 asks for printing {0}, problem-2 asks for printing {0, 1}, . . ., problem-i asks
for printing set containing i elements from N . i.e., each problem prints a subset of N . This
problem collection is same as counting i element subset of P (N), power set of N . Clearly,
all are computational problems (well defined input and output) and hence the number of
computational problems is strictly greater than | P (N) |. We have already shown that P (N)
is uncountable, therefore, the number of computational problems is uncountable.

Solution:2
In the earlier section, while showing the number of C-programs is countably infinite, we
assumed that the alphabet is finite alphabet containing all ASCII characters. This assump-
tion is true while counting the number of programs as program size is finite. However, this
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assumption need not be true for describing the problem. In other words, consider a computa-
tional problem, Print the irrational number 0.524673..., this description contains an
infinite string as a substring. So, the problem description takes infinite characters, which is
a P (

∑∗). Thus, the number of computational problems is uncountable.

Remark on Solvability/Unsolvability:
Every problem is either solvable or unsolvable. A problem is said to be solvable if there exists
an algorithm (or a program that terminates with well defined input and output). A prob-
lem is said to be unsolvable if there does not exists an algorithm (Example: Print N , Print I).

Problem 16: How many solvable problems are there ?
Since each solvable problem has an algorithm, this count is equivalent to the number of
C-programs that halt with well defined input and output. Therefore, the number of solvable
problems is countably infinite.
Problem 17: How many unsolvable problems are there ?
Consider the set of programs print [i, j] where i, j ∈ R, each program in this set is an
unsolvable problem as there is no algorithm to list all values of the closed interval [0, 1] and
this is true for all [i, j]. Since the size of this set is R, the number of unsolvable problems is
uncountable.
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