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Graph Theory

Motivation

1. Given a road network, find a minimum number of policemen so that every road is monitored.
(policemen are placed at junctions, and in case of accidents at road r it will be addressed by
the policeman standing at junction on any one end of r)

2. Design a router network so that it can handle all 2-node failures. (Fault tolerance level is 2)
3. Consider the interaction between processor and resources. Design an inter-process resource

network so that there are no cyclic interactions (deadlock)

Graphs

– An abstract representation of a system under study (system: computer network, road net-
work, router network)

– used as a model to understand the system better
– it is a binary relation
– graphs consist of vertices (nodes) and edges (links/arcs)

Basic Definitions and Simple Counting

V (G) = {v1, v2, . . . , vn}, the set of vertices.
E(G) ⊆ V (G)× V (G), the set of edges, also represents the binary relation.
Ex: V (G) = {1, 2, 3, 4} E(G) = {(1, 1), (1, 3), (3, 4)}
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Fig. 1. A Graph

The graph in example is an example of a directed graph. If E(G) = {{u, v} | u is adjacent to v},
then the underlying graph is an undirected graph. Undirected graph is a special case of directed
graph where in the edge {u, v} in undirected graph represents the edges (u, v) and (v, u) in the
corresponding directed graph.

1. How many different directed graphs on n-vertices are possible?
Since each directed graph corresponds to a binary relation,
The number of n-vertex graphs = the number of binary relations possible on a set of size n
is 2n

2

Definition Simple graphs are graphs with no self loops and no multiple edges.
Ex: V (G) = {1, 2, 3, 4} E(G) = {(1, 3), (3, 4)}, is an example simple graph. The graph given
above is not a simple directed graph.



1 2 3 4

Fig. 2. A Simple Directed Graph
2. How many directed simple graphs are there on n-vertices?

Ans. The number of such graphs are equivalent to the number of irreflexive relations on a
set of size n is 2n

2−n

From now on, we shall work with simple undirected graphs.
Ex: V (G) = {1, 2, 3, 4} E(G) = {{1, 3}, {2, 4}}

1 2 3 4

Fig. 3. An Undirected Graph

3. How many different undirected simple graphs are there on n-vertices?
Ans. The number of such graphs are equivalent to the number of irreflexive and symmetric
relations on a set of size n is 2(n2)

4. How many undirected simple graphs are there on n vertices and l edges.
Ans. Total number of edges possible is

(
n
2

)
and any subset of size l from

(
n
2

)
is an example

graph on n vertices and l edges. Therefore, the number of graphs on l edges is
((n2)
l

)
. (n

choose 2, choose l)

Undirected simple graphs and some more definitions

For a graph G, the neighborhood of a vertex v is NG(v) = {u | {u, v} ∈ E(G)}.
Eg: NG(3) = {2, 4, 5}, NG(4) = {3, 5}

1 2

3

4

5

The degree of a vertex dG(v) is the number of edges incident on v. dG(v) = |NG(v)|
The degree sequence ofG is denoted as (d1, d2, . . . , dn), where di is the degree of vertex vi ∈ V (G).
Example: Consider the above graph G, with dG(1) = 2, dG(2) = 2, dG(3) = 3, dG(4) =
2, dG(5) = 3. The degree sequence is (3 3 2 2 2 ).
Note: Given a degree sequence, one can construct the associated graph in more than one way.
For the degree sequence (2, 2, 2, 2, 2, 2), the two associated graphs are given below;

Definition: Connectedness A graph G is connected if for every u, v ∈ V (G) there exists a path
between u and v
In the above figure, G1 is connected whereas G2 is disconnected with two components.
Connected component is a maximal connected subgraph of a graph. Note that maximal is with
respect to a property, and here it is connectedness.
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We see a natural extension of the previous question as follows. Given a degree sequence (d1, d2, . . . , dn)
can you construct the associated connected graph uniquely?
Ans. No. Consider the degree sequence (3, 2, 2, 2, 1), there are two associated graphs as shown
below;
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Fig. 4. Two non isomorphic representation of (3, 2, 2, 2, 1)

Question: Given two graphs G1 and G2, how can you determine that they are different?
Isomorphism
Two graphs G and H are isomorphic if and only if there exists a bijection from V (G) to V (H).
f : V (G)→ V (H) such that {u, v} ∈ E(G) if and only if {f(u), f(v)} ∈ E(H).
In Figure 4, there does not exist such a bijection from V (G) → V (H). Isomorphism highlights
structural similarity between two graphs.
Remarks:
1. A connected graph and a disconnected graph cannot be isomorphic to each other.
2. A graph containing a cycle and an acyclic graph cannot be isomorphic to each other.
3. There may be many bijections between V (G) and V (H), we are interested in the one that
preserves edge adjacency and non adjacency.
4. If two graphs are isomorphic then the number of vertices and the number of edges of those
two graphs are same. The converse is false as illustrated below.

Questions

1. Given (d1, d2, . . . , dn), how will you construct G.
2. Given G and H, how do you check whether they are isomorphic or not? Also, produce the

associated bijection, if it exists.
3. In a group of n people, how many handshakes are possible?- Ans:

(
n
2

)
4. Are there graphs with the degree sequence

(i) (3, 3, 3, 3, 3) (ii) (3, 3, 3, 4, 4, 2) (iii) (1, 2, 2, 2) (iv) (5, 4, 3, 2, 1)
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Remarks:
1. For any graph, the maximum degree is at most n−1. If a degree sequence of size n contains a
vertex whose degree is more than n, then there is no graph corresponding to the degree sequence.
2. For any graph, we cannot have two vertices such that one is of size 0 and the other is of size
n− 1.
3. The above two conditions are necessary but not sufficient. That is, there are many sequences
that satisfy the above two conditions and not graphic.

Some Structural observations on Graphs

Claim 1:
n∑
i=1

di = Even

Claim 2:
n∑
i=1

di = 2|E|

Induction on m = |E(G)|

Proof. Base case: m = 1,
n∑
i=1

di = 2 is even

Induction Hypothesis: Assume that the claim is true for graphs with less than m edges, m ≥ 2.
Induction Step: Consider the graph with m-edges; m ≥ 2 and let {u, v} ∈ E(G).
Consider the graph G− {u, v}. V (G− {u, v}) = V (G) and E(G− {u, v}) = E(G)\{u, v}.
Since |E(G− {u, v})| = m− 1, we can bring in the induction hypothesis.

By the Induction hypothesis, in G− {u, v},
n∑
i=1

di = 2m′ = 2(m− 1).

Add {u, v} to G− {u, v}. Consider the degree sequence d1 + d2 + . . .+ du + dv + . . .+ dn.
du = du′ + 1, dv = dv′ + 1, u′ and v′ are the vertices corresponding to u and v in G−{u, v}. By
introducing the edge {u, v}, the degree of u′ (v′) increases by one.
d1 + d2 + . . .+ du′ + 1 + dv′ + 1 + . . .+ dn.
= d1 + d2 + . . .+ du′ + dv′ + . . .+ dn + 2 = 2(m− 1) + 2 = 2m. ut

We shall next present another inductive proof of the above claim; induction on |V (G)|

Proof. Base case: n = 1,
n∑
i=1

di = 0 is even

Induction hypothesis: Assume the claim is true for graphs with (n− 1)-vertices, n ≥ 2.
Induction Step: Let G be a graph on n-vertices n ≥ 2

V (G) = {u1, u2, u3, . . . , un}
Let ui be a vertex with minimum degree (δ(G))
Consider the graph G− ui. |V (G− {ui})| = n− 1 and |E(G− {ui})| = |E(G)| − dui
By the induction hypothesis, the claim is true in G− ui
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i.e., du1 + du2 + . . .+ dui−1 + dui+1 + . . .+ dun = 2m′

du1 +du2 + . . .+dui−1 +dui+1 + . . .+dun = 2(m− δ(G)), due to the removal δ(G) edges incident
on the minimum degree vertex.
By introducing ui in G−ui, we can see that every vertex v ∈ NG(ui), dG(v) is increased by one.
Now, du1 +du2 + . . .+dv1 +dv2 + . . .+dvδ(G)

+ . . .+dun +dui where {v1, v2, . . . , vδ(G)} = NG(ui).
Also, note that dui is added to the sum as ui is added.
du1 + du2 + . . .+ dv′1 + 1 + dv′2 + 1 + . . .+ dv′

δ(G)
+ 1 + . . .+ dun + dui

= du1 + du2 + . . .+ dv′1 + dv′2 + . . .+ dδ′(G) + . . .+ dun + 1 + 1 . . .+ 1 + dui [ no.of 1’s=δ(G) and
dui = δ(G) ]
By I.H. =⇒ 2(m− δ(G)) + δ(G) + δ(G) = 2m. This completes the proof. ut

Based on the above claim, here is an interesting corollary; Let Vodd = {u | dG(u) : 2k+1, k ≥ 0}
and Veven = {u | dG(u) : 2k, k ≥ 0}∑
u∈Vodd

+
∑

u∈Veven

= 2m

implies
∑

u∈Vodd

is even

Claim 3: The number of odd degree vertices in any graph is always even.
Corollary of claim 2.

Some Special Graphs

Path graphs A path graph Pn on n vertices is defined as follows; V (Pn) = {v1, . . . , vn}, E(Pn) =

{{vi, vi+1} | 1 ≤ i ≤ (n− 1)}.
Note |V (Pn)| = n, |E(Pn)| = n− 1

Cycle graphs A cycle graph Cn on n vertices is defined as follows; V (Cn) = {v1, . . . , vn},
E(Cn) = {{vi, vi+1} | 1 ≤ i ≤ (n− 1)} ∪ {v1, vn}.
Note |V (Cn)| = n, |E(Cn)| = n

For a graph, the number of edges is in the range [0..
(
n
2

)
]. Graphs with

(
n
2

)
edges are called

complete graphs.
Complete graphs A complete graphKn on n vertices is defined as follows; V (Kn) = {v1, . . . , vn},
E(Kn) = {{vi, vj} | vi, vj ∈ V (Kn)}.

Regular graphs: G is k-regular if for every v ∈ V (G), dG(v) = k

Ex: Cn is 2-regular, Kn is (n− 1)-regular.
The number of edges in a k regular graph on n vertices = nk

2

Are there 3-regular graph on 7 vertices - No
Trees: A tree is a connected acyclic graph. A tree on n vertices has n− 1 edges.
Bipartite graphs:
G is a bipartite graph if there exists a partition V1, V2 of V (G) such that V (G) = V1 ∪ V2 and
V1 ∩ V2 = ∅. For every edge e = {u, v} ∈ E(G), u ∈ V1 and v ∈ V2

Example bipartite graphs include Pn, C2n, and all trees. Kn, n ≥ 3 and C2n+1, n ≥ 1 are
not bipartite.
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Question: Does there exist a characterization for a graph to be bipartite ?

Claim 4: G is bipartite if and only if G is odd-cycle free.

Proof. Necessity: Since G is bipartite, there exist V1, V2 such that V (G) = V1 ∪ V2, V1 ∩ V2 = ∅,
and for every edge e = {u, v} ∈ E(G), u ∈ V1 and v ∈ V2
Consider u ∈ V1 and a cycle C starting and ending at u.
Since any cycle C that starts and ends at u visits vertices of V1 and V2 alternately, the length
of C is clearly even.
Note: for any {x, y} ⊆ V1, distance between x and y is 2k + 1, k ≥ 1. Therefore, the length of
cycle C is 2k + 1 + 1, which is even.
Sufficiency: G is odd cycle free. To show that G is 2-partite, we need to exhibit a bipartition.

x
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w
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2k
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x

z

w

V
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2k-r

2k’-r

z’

Fig. 5. An illustration for the proof of Claim 3

Let x be a vertex in G.
Consider V1 = {u | distance(x, u) = even}
V2 = {u | distance(x, u) = odd}
Claim 1: V = V1 ∪ V2
Claim 2: V1 ∩ V2 = ∅
Claim 3: For each w, z ∈ V1, {w, z} 6∈ E(G).
Proof: Suppose {w, z} ∈ E(G), then |Pxw| = 2k and |Pzx| = 2k′ for some k′, k ≥ 1 as shown in
figure. (Pxw, {w, z}, Pzx) is a cycle of length 2k + 2k′ − 1 = 2l + 1 for some l ≥ 1. Therefore,
G contains an odd cycle and this is a contradiction to the premise. Our assumption that there
exists {w, z} ∈ E(G) is wrong and {w, z} 6∈ E(G). Therefore, V1 is an independent set. Similar
arguments hold true if V2 is an independent set.
Suppose, V (Pxw)∩V (Pzx) 6= ∅, then identify the last vertex z′ such that z′ ∈ Pxw and z′ ∈ Pzx.
Let the length of Pxz′ , |Pxz′ | = r. Note that Pxz′ ⊆ Pxw and Pxz′ ⊆ Pxz are of length r. Suppose
|Pxz′ | < r, then it contradicts the fact that Pxz is a shortest path. It follows that |Pzz′ | = 2k′− r
and |Pz′w| = 2k − r. The length of cycle (Pz′w, {w, z}, Pzz′) is 2k − r + 2k′ − r − 1 = 2l + 1

for some l ≥ 1. Therefore, there exists an odd cycle which is a contradiction. Therefore, the
assumption is wrong, and the claim follows. ut

Questions:
A graph is 3-partite if and only if −−−? Can one come up with a forbidden structure similar
to bipartite graphs
What about a necessary and sufficient condition for a graph to be k-partite ?

Subgraphs
A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is an induced subgraph
of G, if H is a subgraph of G and {u, v} ∈ E(G) if and only if {u, v} ∈ E(H). For example,
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1. Pn is a subgraph of Cn but not induced. Pn−1 is an induced subgraph of Cn. For 1 ≤ k ≤ n−1,
Pk is an induced subgraph of Cn.
2. Cn is a subgraph of Kn but not induced, n ≥ 4. Kn−1 is an induced subgraph of Kn.
3. Any Kn contains a k-regular induced subgraph, 1 ≤ k ≤ (n− 1).
4. Any connected graph on n vertices contains a tree on n vertices as its subgraph.
5. Kn contains every cycle of length k, 3 ≤ k ≤ n.

Induced Cycle
A chord in a cycle is an edge connecting non consecutive vertices in a cycle. A cycle without
chords is an induced cycle. Any Cn, by definition, induced. K4 has induced C3 but not induced
C4; contains C4 but not induced C4. Any Kn, n ≥ 3, contains induced C3 but no induced Ck,
k ≥ 4.
Hamiltonian and Eulerian graphs
The Hamiltonian cycle (path) is spanning cycle (path) containing each vertex exactly once. A
connected graph is Hamiltonian (cycle or path) if it contains Hamiltonian cycle (path). The
Eulerian cycle (path) is a spanning cycle (path) containing each edge exactly once. A vertex
may appear more than once. A connected graph is Eulerian if it contains Eulerian cycle (path).
Eulerian cycle are also referred to as Eulerian circuit in the literature.
1. Pn has Hamiltonian path but not Hamiltonian cycle. Similarly, Pn has Eulerian path but not
Eulerian cycle.
2. Kn has Hamiltonian cycle and Hamiltonian path. If a graph has Hamiltonian cycle then it
has Hamiltonian path as well. The converse need not be true.
3. K2n+1 has Eulerian cycle and path.

Self Complementary graphs
For a graph G, the complement of G is denoted as Ḡ which is, V (Ḡ) = V (G), E(Ḡ) =
{{u, v} | {u, v} /∈ E(G)}. If a graph G is isomorphic to Ḡ (complement of G), then G and
Ḡ are self complementary graphs. The complement of P4 is P4 itself, and therefore P4 and its
complement are self complementary graphs. C5 and its complement which is C5 itself, are self
complementary graphs.

Line graphs For a graph G, the line graph L(G) is defined as V (L(G)) = {e | e ∈ E(G)},
E(L(G)) = {{e, e′} | e is adjacent to e′ in G}. The line graph of Pn is Pn−1. The line graph of
Cn is Cn. The line graph of K4 is a 4-regular graph on 6 vertices.

Planar Drawing and Planar Graphs
A plane drawing is a drawing of edges in which no two edges cross each other. A graph is a
planar graph if there exists a plane drawing. K4, any Pn, any Cn, any tree are planar graphs. K5

and K3,3 (complete bipartite graph with partition size is 3 each) are non-planar. Interestingly,
K5 − e and K3,3 − e (exactly one edge is removed from K3,3) are planar.

1. If a subgraph is non-planar then the graph (super graph) is non-planar.
2. If G is planar then the number of edges is, |E(G)| ≤ 3|V (G)| − 6. That is, m ≤ 3n− 6.
3. The minimum degree in any planar graph is at most 5. If suppose, minimum degree is at least
6, then the degree sum is 6n and the number of edges is at least 3n. A contradiction to the
previous result.
4. Any closed region is referred to as face in a graph (also known as interior face). The exterior
face of a planar graph refers to the plane on which the graph is drawn. For acyclic graphs, there
is no interior face and has exactly one exterior face.
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For Cn, the number of faces is two; for trees, the number of faces is one. The following for-
mula due to Euler relates n,m and the number of faces (f). For any connected planar graph,
n −m + f = 2. For a disconnected graph, the above formula is applicable for each connected
component.
5. For the following graph, n = 5,m = 6, f = 3, n−m+ f = 2 is verified.
6. The following graph is disconnected and hence, Euler’s formula is applied on each connected
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component. For component one, 6−6+2 = 2. For the second and third components, 3−3+2 = 2.
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7. For an edge e = {u, v}, the contraction of e is defined as follows; V (G·e) = (V (G)\{u, v})∪{z},
E(G ·e) = (E(G)\ ({{u, x} | x ∈ V (G)}∪{{v, x} | x ∈ V (G)}))∪{{z, x} | x ∈ NG(u)∪NG(v)}.
That is, contraction of an edge e = {u, v} removes the end points u and v, and introduces a new
vertex z such that z is adjacent to NG(u) ∪NG(v).
8. The graph G · e is a minor of G. If K5 or K3,3 can be obtained through a sequence of edge
contractions, then the underlying graph is non-planar.
9. Kuratowski’s Result: G is planar iff G does not have K5 or K3,3 minor.

Graph Coloring

– An assignment of colors to vertices of a graph
– Proper coloring - adjacent vertices receive different colors.
– G is k-colorable if and only if there exists c : V (G) → {1, 2, . . . , k} such that for all e =
{u, v}, c(u) 6= c(v)

– Chromatic Number χ(G) is the minimum number of colors required to properly color a graph.

χ(Kn) = n
χ(Pn) = 2
χ(Tree) = 2
χ(C2n) = 2
χ(C2n+1) = 3
χ(bipartite graph) = 2
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G is bipartite if and only if G is 2-colorable.
The following statements are equivalent.

– G is bipartite
– G is 2-colorable
– G is odd-cycle free

Clique, Independent Set and Matching
Clique: A set S ⊆ V (G) is a clique, if ∀u, v ∈ S, {u, v} ∈ E(G). That is, a fully connected
subgraph of G. Any Kn is a clique. Any tree contains a clique of size 2 (any edge) and no cliques
of size at least 3. For all bipartite graphs, maximum clique size is 2.

Independent set: A set S ⊆ V (G) is an independent set, if ∀u, v ∈ S, {u, v} /∈ E(G). In
Pn, the alternate vertices form an independent set. The size of independent set in Pn is n

2 . In a
tree, the set of leaves is an example independent set.
Matching: A set E′ ⊆ E(G) is a matching, if ∀e, e′ ∈ E(G), e ∩ e′ = φ. That is a set of edges
such that no two edges share a vertex in common. A perfect matching is a matching that covers
each vertex. P4 has a perfect matching, whereas P5 does not have a perfect matching.
The Peterson Graph: The Peterson graph, named after the famous mathematician Peterson,
is given below;

Fig. 6. The Peterson graph

The peterson graph has many interesting properties (i) 3-regular (ii) 3-vertex colorable and 3-
edge colorable (iii) non-bipartite (iv) non-planar (v) Has Hamiltonian path but not Hamiltonian
cycle (vi) Non-Eulerian (v) Has induced C5, C6. To prove non-planarity, contract all edges con-
necting outer C5 and inner star on 5 vertices, the resultant is K5.
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Fifty minutes ago if it was four times

as many minutes past three o’clock.

How many minutes is it to six o’clock

A Matter of Time [1]

Reading assignment
[1]. Shakuntala Devi: "Puzzles to Puzzle you"
"More Puzzles",
"Figuring: The Joy Of Numbers"
[2]. George J. Summers: "The Great Book of Mind Teasers and
Mind Puzzlers"
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