Practice Questions

1. Draw two non-isomorphic graphs for the sequence $(3,3,3,3,3,3,3,3)$.
(i) Two K_{4} 's, the graph is disconnected. (ii) Consider a cycle on 8 vertices, C_{8}. Add the following edges to C_{8} to get the desired sequence. $\{\{1,5\},\{2,8\},\{3,7\},\{4,6\}\}$.
2. Draw a bipartite graph for the sequence $(3,3,3,3,3,3,3,3)$.

Consider C_{8} augmented with the edge set $\{\{1,4\},\{8,5\},\{3,6\},\{2,7\}\}$, is an example bipartite graph.
3. What is the largest induced cycle in the above graph.
C_{6}. The set $\{1,4,3,6,7,8\}$ induces C_{6}.
4. Consider the Adjacency matrix representation of a simple graph. What does entries A^{2} denote? What about A^{3}, A^{k} ?

$$
A=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \quad A^{2}=\left[\begin{array}{lllll}
2 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 & 1 \\
1 & 1 & 4 & 1 & 1 \\
1 & 1 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 & 2
\end{array}\right]
$$

G

$$
A^{3}=\left[\begin{array}{lllll}
2 & 3 & 5 & 2 & 2 \\
3 & 2 & 5 & 2 & 2 \\
5 & 5 & 4 & 5 & 5 \\
2 & 2 & 5 & 2 & 3 \\
2 & 2 & 5 & 3 & 2
\end{array}\right]
$$

Consider the adjacency matrix representation of the above graph.
Note that $A^{k}[i, j]$ represents the number of paths from i to j of length k.
For example, there exist three paths of length 3 from 1 to 2 .
I.e., $A^{3}[1,2]=3$ and the paths are $(1-2-1-2),(1-3-1-2),(1-2-3-2)$.
5. If G is a simple graph with 15 edges and \bar{G} has 13 edges, how many vertices does G have?

Total number of edges possible $=\binom{n}{2}=15+13=28 . \Longrightarrow n=8$
6. The maximum number of edges in a simple graph with 10 vertices and 4 components is Ans: 21. Three components with K_{1} 's and one component with K_{7}. Number of edges $=\binom{7}{2}=21$
7. For which value of k an acyclic graph G with 17 vertices, 8 edges and k components exist?

Let $e_{i}, n_{i}, 1 \leq i \leq k$ represents the number of edges, and number of vertices in component i, respectively.
Given $\sum_{i=1}^{k} e_{i}=8$
Since the graph is acyclic it follows that $e_{i}=n_{i}-1,1 \leq i \leq k$.
Therefore, $\sum_{i=1}^{k}\left(n_{i}-1\right)=8 \Longrightarrow \sum_{i=1}^{k} n_{i}-k=8$
Since $\sum_{i=1}^{k} n_{i}=17, k=17-8=9$
8. Find the minimum number of vertices in a simple graph with 13 edges and having 5 vertices of degree 4 and the rest having degree less than 3 .
Ans: 8. $\sum_{i=1}^{n} d_{i}=13 \times 2=26$. Number of 4 degree vertices $=5$. This contributes 20 to the degree. For the rest, we can use vertices of degree less than 3. i.e., there should exist three 2 -degree vertices. Therefore, the total number of vertices is at least $5+3=8$.
9. Does there exist a simple graph with degree sequence $(7,7,6,6,5,5,4,4,3,3,2,2,1,1)$?

Ans: Yes.

Figure 1: Bipartite graph with the given degree sequence
10. A simple graph G has degree sequence $(3,3,2,1,1)$. What is the degree sequence of G^{c} ?

Ans: $(1,1,2,3,3)$. For each vertex, the sum of its degrees in G and G^{c} is $n-1$. Therefore, $d_{G^{c}}(v)=$ $(n-1)-d_{G}(v)$.
11. If the degree sequence of a simple graph G is $(4,3,3,2,2)$, what is the degree sequence of G^{c} ? Ans: $(0,1,1,2,2)$
12. The maximum number of edges in a bipartite graph with n vertices is ...

Ans: If n is even, then complete bipartite graph $K_{\frac{n}{2}, \frac{n}{2}}$ has maximum edges, which equals $\frac{n^{2}}{4}$. If n is odd, then $K_{\frac{n-1}{2}, \frac{n+1}{2}}$ has maximum edges which is $\frac{n^{2}-1}{4}$.
13. What is the chromatic number of Peterson graph?

Ans: 3 . In the given below graph, $1,2,3$ represents three different colors.

Figure 2: Coloring of a Peterson graph
14. Claim: If G contains K_{4} as a subgraph, then G is at least 4 -colorable. Is this true? Are there 4colorable graphs without K_{4}. Are there triangle free graphs with chromatic number 4 ? Above claim is true. In the 4 -colorable graph shown below, G_{1} has no K_{3} and G_{2} has no K_{4} as a subgraph.

Figure 3: 4-colorable Graphs

