Practice Questions - Infinite Sets

- 1. Determine which of the following sets are finite and which are infinite.
 - (a) The set of all strings $\{a, b, c\}^*$ of length no greater than k.
 - Finite set (Since k is fixed). Number of strings of length zero = 1. Number of strings of length one = 3. Number of strings of length two = $3^2 = 9$. Thus, number of strings of length no greater than k is $3^0 + 3^1 + \ldots + 3^k$.
 - (b) The set of all $m \ge n$ matrices with entries from $\{0, 1, \ldots, k\}$ where k, m, n are positive integers.

Number of entries in a $m \times n$ matrix is mn and each entry has k+1 options, thus there are $(k+1)^{mn}$ possible $m \times n$ matrices if k, m and n are fixed, which is a finite set. If k is a variable and m, n are fixed, then the number of possibilities are $\sum_{k=1}^{\infty} (k+1)^{mn}$. This is equivalent to enumerating all integer arrays of size mn, which is a countably infinite set.

- (c) The set of all functions from $\{0, 1\}$ to **I**. Countably infinite. Since, f(0) = a and f(1) = b, where $(a, b) \in I \times I$, which is countably infinite.
- (d) The set of all polynomials of degree two with integer coefficients. Countably infinite. Since, counting the set of all polynomials with integer co-efficients is equivalent to count I × I × I. i.e., {(a₁, a₂, a₃) | a_i is a co-efficient } and the number of such (a₁, a₂, a₃) is I × I × I
- 2. Prove that the intersection of two infinite sets is not necessarily infinite. (the class of infinite sets is not closed under intersection) Let $A = I^+ \cup \{0\}$ and $B = I^+ \cup \{0\}$. Clearly, A and B are infinite sets. $A \cap B = \{0\}$, which is finite.
- 3. Let A and B be infinite sets such that $B \subset A$. Is the set A B necessarily finite? Is it necessarily infinite? Give examples to support your answer. It can be either finite or infinite. For example: If A = I and B = N are the infinite sets then A B is infinite. If A = N and $B = I^+$ are the infinite sets then A B is finite.
- 4. Check whether the following sets are countable.(countably finite or countably infinite)
 - (a) The set of all functions from the set $\{0, 1, ..., k-1\}$ to **N**, where k is a fixed integer. $f: \{0, 1, ..., k-1\} \to N$ such that $f(0) = a_1, f(1) = a_2, ..., f(k-1) = a_k$, where $a_i \in N$. Thus the problem is equivalent to finding the number of elements in $N \times N \times ... \times N(k$ times), which is countably infinite.
 - (b) Let S be a countably infinite set. (i) Set of all subsets of \mathbf{S} (ii) set of all finite subsets of \mathbf{S} .
 - (i): Since the power set of the natural number set is uncountable, the set of all subsets is uncountable.
 - (ii): Let k be the size of largest finite subset. A_1 : set of singleton sets, A_i : set of *i*-element sets, $1 \le i \le k$. The set A_i can be seen as $(N \times N \times ... \times N)$ (*i* times)

which is a countably infinite set. The required set is $\bigcup_{i=1}^{k} A_i$, since countable union of countably infinite sets is countably infinite, the result is countably infinite.

- (c) The set of computational problems in computer science. Uncountable, for example; P_{ij} = print the open interval (i, j) where $i, j \in R$. The number of such P_{ij} 's is the cardinality of real numbers and hence uncountable.
- (d) $A = \{(x_1, \ldots, x_k) \mid x_i \in \mathbb{N} \text{ and } k \text{ is a fixed integer } \}$ Countably infinite as $N \times N \times \ldots \times N(k \text{ times})$ is countably infinite.
- (e) $A = \{(x_1, \ldots, x_k) \mid x_i \in \mathbb{N} \text{ and } k \text{ is a variable integer } \}$ Since each element (vector of k elements) is a subset of N, the number of such vectors is the cardinality of the power set of N. Therefore, uncountable.