Practice Questions - Infinite Sets

1. Determine which of the following sets are finite and which are infinite.
(a) The set of all strings $\{a, b, c\}^{*}$ of length no greater than k.

Finite set (Since k is fixed). Number of strings of length zero $=1$. Number of strings of length one $=3$. Number of strings of length two $=3^{2}=9$. Thus, number of strings of length no greater than k is $3^{0}+3^{1}+\ldots+3^{k}$.
(b) The set of all $m \times n$ matrices with entries from $\{0,1, \ldots, k\}$ where k, m, n are positive integers.
Number of entries in a $m \times n$ matrix is $m n$ and each entry has $k+1$ options, thus there are $(k+1)^{m n}$ possible $m \times n$ matrices if k, m and n are fixed, which is a finite set. If k is a variable and m, n are fixed, then the number of possibilities are $\sum_{k=1}^{\infty}(k+1)^{m n}$. This is equivalent to enumerating all integer arrays of size $m n$, which is a countably infinite set.
(c) The set of all functions from $\{0,1\}$ to \mathbf{I}.

Countably infinite. Since, $f(0)=a$ and $f(1)=b$, where $(a, b) \in I \times I$, which is countably infinite.
(d) The set of all polynomials of degree two with integer coefficients.

Countably infinite. Since, counting the set of all polynomials with integer co-efficients is equivalent to count $I \times I \times I$. i.e., $\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{i}\right.$ is a co-efficient $\}$ and the number of such $\left(a_{1}, a_{2}, a_{3}\right)$ is $I \times I \times I$
2. Prove that the intersection of two infinite sets is not necessarily infinite. (the class of infinite sets is not closed under intersection) Let $A=I^{+} \cup\{0\}$ and $B=I^{+} \cup\{0\}$. Clearly, A and B are infinite sets. $A \cap B=\{0\}$, which is finite.
3. Let A and B be infinite sets such that $B \subset A$. Is the set $A-B$ necessarily finite? Is it necessarily infinite? Give examples to support your answer. It can be either finite or infinite. For example: If $A=I$ and $B=N$ are the infinite sets then $A-B$ is infinite. If $A=N$ and $B=I^{+}$are the infinite sets then $A-B$ is finite.
4. Check whether the following sets are countable.(countably finite or countably infinite)
(a) The set of all functions from the set $\{0,1, \ldots, k-1\}$ to \mathbf{N}, where k is a fixed integer. $f:\{0,1, \ldots, k-1\} \rightarrow N$ such that $f(0)=a_{1}, f(1)=a_{2}, \ldots, f(k-1)=a_{k}$, where $a_{i} \in N$. Thus the problem is equivalent to finding the number of elements in $N \times N \times \ldots \times N(k$ times), which is countably infinite.
(b) Let S be a countably infinite set. (i) Set of all subsets of \mathbf{S} (ii) set of all finite subsets of S.

- (i): Since the power set of the natural number set is uncountable, the set of all subsets is uncountable.
- (ii): Let k be the size of largest finite subset. A_{1} : set of singleton sets, A_{i} : set of i-element sets, $1 \leq i \leq k$. The set A_{i} can be seen as $(N \times N \times \ldots \times N)(i$ times $)$
which is a countably infinite set. The required set is $\cup_{i=1}^{k} A_{i}$, since countable union of countably infinite sets is countably infinite, the result is countably infinite.
(c) The set of computational problems in computer science. Uncountable, for example; $P_{i j}=$ print the open interval (i, j) where $i, j \in R$. The number of such $P_{i j}$'s is the cardinality of real numbers and hence uncountable.
(d) $A=\left\{\left(x_{1}, \ldots, x_{k}\right) \mid x_{i} \in \mathbf{N}\right.$ and k is a fixed integer $\}$ Countably infinite as $N \times N \times \ldots \times N(k$ times) is countably infinite.
(e) $A=\left\{\left(x_{1}, \ldots, x_{k}\right) \mid x_{i} \in \mathbf{N}\right.$ and k is a variable integer $\}$ Since each element (vector of k elements) is a subset of N, the number of such vectors is the cardinality of the power set of N. Therefore, uncountable.

