
Practice Questions - Relations and Proof Techniques

1. Prove that 20 = 1.
Solution:
20 = 2x−x = 2x

2x = 1

2. What is the powerset of {1, {2}, ∅, {∅}}.
Solution:
{∅,
{1}, {{2}}, {∅}, {{∅}},
{1, {2}}, {1, ∅}, {1, {∅}}, {{2}, ∅}, {{2}, {∅}}, {∅, {∅}},
{1, {2}, ∅}, {1, {2}, {∅}}, {2, ∅, {∅}}, {1, ∅, {∅}},
{1, {2}, ∅, {∅}}}

3. Prove that the empty set is a subset of every set.
Solution:
Definition of a subset: A ⊆ B iff ∀x(x ∈ A→ x ∈ B). Note that ∀xP (x) is true if UOD is empty (we
need at least one element in UOD to disprove) and ∃xP (x) is false if UOD is empty (we need at least
one element in UOD to prove). If A is empty (UOD is empty), then the premise of sufficiency is false
and the claim is true. This is called ’trivial’ proof or the statement is ’vacuously’ true.

4. Show that
√

3 is irrational.
Solution:√

3 = a
b ; let the representation be in simplified form, i.e., gcd(a, b) = 1

⇒ 3 = a2

b2

⇒ a2 = 3 · b2
a2 is a multiple of 3 and hence, a is also a multiple of 3. If a is not a multiple of 3, then a is of the
form either 3k + 1 or 3k + 2. Thus, a2 is of the form either 9k2 + 6k + 1 or 9k2 + 12k + 4, which is a
contradiction to our assumption that a2 is a multiple of 3. So, assume that a = 3k, for some k ∈ N.
Thus,

a2 = 3 · b2 ⇒ 9k2 = 3b2 ⇒ 3k2 = b2 ⇒ b = ±3k

Hence, b is also a multiple of 3. In this case a
b is not in simplest form (gcd(a, b) ≥ 3), which is a

contradiction.

5. You are given a box of size
√

3×
√

3×
√

3. Is the size of the box finite or infinite. Justify.
Solution:
Consider a box of size 3 × 3 × 3 (unit: say, m3). Clearly, the box is finite and it contains any box of
size
√

3×
√

3×
√

3. Any sub box of a finite box is also finite. (any subset of a finite set is finite)

6. Present a direct proof: 2n ≤ n! ≤ nn.
Solution:
2n = 2× 2× . . .× 2; 2 appearing n times.
Clearly, 2× 2× . . .× 2 ≤ n× (n− 1)× . . .× 2× 1. Note that
2 6≤ 1, 2 × 2 6≤ 2 × 1, 2 × 2 × 2 6≤ 3 × 2 × 1, whereas, 2 × 2 × 2 × 2 ≤ 4 × 3 × 2 × 1. That
is, 2 × 2 × 2 × 2 ≤ 4 × 3 × 2 × 1 is equivalent to 2 × 2 × 2 × 2 ≤ 2 × 2 × 3 × 2 × 1. Further,
2× 2× 2× 2× 2 ≤ 5× 4(2× 2)× 3× 2× 1. Thus, for n ≥ 4, 2n ≤ n!.

Further, n× (n− 1)× . . .× 2× 1 ≤ n× n× . . .× n, for n ≥ 1. Thus, the claim follows for n ≥ 4.

7. Suppose that the 10 integers 1, 2, . . . , 10 are randomly positioned around a circular wheel. Show that
the sum of some set of 3 consecutively positioned numbers is at least 17.
Solution:
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Let ai denote a label in the range [1..10]. On the contrary, assume that the sum of any three consecu-
tive sectors is ≤ 16. Therefore,
a1 + a2 + a3 ≤ 16
a2 + a3 + a4 ≤ 16
·
·
a10 + a1 + a2 ≤ 16

10∑
i=1

ai ≤ 10× 16

3× (1 + 2 + . . .+ 10) ≤ (10× 16)

165 ≤ 160 (a contradiction)

Thus, our assumption that the sum of any three consecutive sectors is ≤ 16 is wrong. Therefore, there
exist 3 consecutive sectors such that the sum of their assigned numbers is at least 17.

8. For each positive integer n, there are more than n prime integers.
Solution:
Base case: n = 1. {2, 3, . . . , } are prime integers. Clearly, for n = 1, there exists more than one.
Induction hypothesis: Assume for n = k, k ≥ 1, that there exists more than k prime integers. Let the
prime numbers be p1, p2, . . . , pk, pk+1, . . ..
Induction step: We claim that for n = k + 1, k ≥ 1 there exists more than k + 1 prime numbers.
Consider the number P = p1 · p2 . . . pk · pk+1 + 1, i.e., P is one plus the product of the prime numbers
p1, p2, . . . , pk+1.
We consider the following cases to complete the proof.
Case a: If P is a prime number, then there exists more than k + 1 prime numbers with (k + 2)nd

prime number being P .
i.e., {p1, p2, . . . , pk, pk+1, P} are the set of (k + 2) prime numbers.
Case b: If P is not a prime number, then note that there exists a prime factorization for P and none
of {p1, p2, . . . , pk, pk+1} are its prime factors. This implies that there exists a prime factor pk+2 for P
such that pk+2 6= pi, 1 ≤ i ≤ k + 1. Therefore, {p1, p2, . . . , pk, pk+1, pk+2} are prime numbers with
cardinality more than k + 1. The induction is complete and hence the claim follows.

9. Show that Fn ≤ ( 12
7 )n, where Fn is the nth Fibonacci number.

Solution:
Base: n = 1, F1 = 1 ≤ ( 12

7 )1, F2 = 1 ≤ ( 12
7 )2.

Strong induction hypothesis: Assume the claim is true for Fk−1 and Fk, k ≥ 2. Note that, two base
cases must be proved as the hypothesis make assumption about Fk−1 and Fk. As part of the hypothesis,
we assume that Fk ≤ ( 12

7 )k and Fk−1 ≤ ( 12
7 )k−1. Induction Step: Consider Fk+1 = Fk + Fk−1.

Fk+1 ≤ ( 12
7 )k + ( 12

7 )k−1 = ( 12
7 )k(1 + 7

12 ) < ( 12
7 )k+1. Thus, the claim follows for n ≥ 1.

10. Recall currency change problem. Given the denominations R5 and R9, show that change for Rx can
be given using these two denominations.
Solution:
Let us prove this by induction on n. Base Case: n = 35. Seven $5’s.
Hypothesis: n = k, k ≥ 35. Assume that $k request can be served using $5 and $9.
Induction Step: n = k + 1, k ≥ 35. We will divide this into two cases
Case 1: There exist at least one $9.
Replace one $9 with two $5.
Case 2: There exist at least seven $5.
Replace seven $5 with four $9.
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The induction is complete and hence the claim follows. Note: Induction works fine even if we assume
base case to be n = 32. In fact any n ≥ 32 works fine.

11. Show that (11)n+2 + (12)2n+1 is divisble by 133.
Solution:
Base Case: n = 0. 112 + 121 = 133, which is divisible by 133.
Hypothesis: Assume that the statement is true for n = k, k ≥ 0.
i.e., 11k+2 + 122k+1 is divisible by 133.
Induction Step: Let n = k + 1, k ≥ 0.

11(k+1)+2 + 122(k+1)+1 = 11(k+2)+1 + 122k+1+2

= 11(k+2)+1 + 122k+1 · 122

= 11(k+2)+1 + 122k+1 · (133 + 11)

= 11 · (11(k+2) + 122k+1) + 133 · 122k+1

(11(k+2) + 122k+1) is divisible by 133 by the hypothesis. It follows that, 11 · (11(k+2) + 122k+1) + 133 ·
122k+1 is divisible by 133. Thus, 11(k+1)+2 + 122(k+1)+1 is divisible by 133.

Hence, 11n+2 + 122n+1 is divisible by 133 for all n ≥ 0.

12. Let Σ = {a, b, c} be the alphabet. Show that the number of words of length n in which the letter ’a’
appears an even number of times is (3n + 1)/2. Use induction or any other technique.
Solution:
n = 1. There are two strings, namely, b and c with even number of a’s (no a’s) and hence the base
case is true. (31 + 1)/2 = 2.
Assume for a length n string in which a appears even number of times, it is (3n + 1)/2.
Consider a (n+ 1) length string in which a appears even number of times. This can be obtained from
n length string in two ways.
Let an denote the number of n-length strings containing even number of a’s. an+1 can be obtained
from (i) an by appending the character b or c as the (n + 1)th character. (ii) to each n-length string
containing odd number of a’s append the character a as the (n + 1)th character. Note that there are
3n length n strings, of which, 3n − an is the number of strings with odd number of a’s. Therefore,
an+1 = an + an + (3n − an), which is (3 · 3n + 1)/2. Hence, the claim.

13. Prove or Disprove. (7× 7− 1) chess board can be tiled using trio-minoes.
Solution: The claim is true. We shall obtain 16 different configurations of (7× 7− 1) and in each, we
can argue that the tiling is possible. All other configurations are symmetric to one of 16 configurations.
To tile (7× 7− 1), we visualize (7× 7− 1) as a combination of one or more of sub chess board of size
(4× 4− 1), 2× 3, 4× 3. Further, in each of sub chess board, tiling is possible.

14. Recall currency change problem. Are R3 and R6 sound enough to give change for Rx. If not, construct
an infinite set of counter examples to justify your claim.
Solution:
A = {x|x = 3k+ 1 or 3k+ 2, k is an integer }. If x is of this form, then change for Rx cannot be given
using R3 and R6.

15. Generalization of currency change problem: Given the denominations; Rm and Rn, what is the condi-
tion for m and n such that change for Rx can be given. If the solution exists, what is the condition
for m and n, what is the lower bound for the base case, and complete the argument using MI.
Solution:
Approach: 1 Frobenius number : Given m and n which are relatively prime, the largest number that
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cannot be expressed as a linear combination of n and m is mn−m−n. This implies that starting from
mn−m− n+ 1 onwards, we can express the number as mx+ ny for some positive integers x and y
Approach: 2 (This approach was discovered by Aneesh team, Coe16) Basis: There are m base
cases. {mn,mn+ 1,mn+ 2, . . . ,mn+ (m− 1)} are the basis. Clearly, mn can be expressed as a linear
combination using m and n. Assuming m > n, and m and n are relatively prime, we now show that
each expression in basis set can be expressed as mx− ny for some integers x and y. Towards this end,
we define the following function.
F (x, y) = (mx− ny) mod m
It follows that, F (x, x) = (mx− nx) mod m = x(m− n) mod m

Claim: F (1, 1), F (2, 2), . . . , F (m− 1,m− 1) are distinct. The remainders given by the above function
are distinct. We shall prove this by contradiction. Suppose, there exists k, l such that 1 ≤ l < k ≤
(m− 1) and F (k, k) = F (l, l).

(m− n)k mod m = (m− n)l mod m
(m− n)(k − l) mod m. This implies that m properly divides (m− n)(k − l).
It follows that either m divides (m− n) or m divides (k − l).
Suppose, m divides (m − n), then m − n = mq. Thus, we get, n = m(1 − q) and this implies that
q < 1 which is not possible by the definition of positive quotient. If quotient can be negative, then n is
a multiple of m which contradicts the fact that n and m are co-prime. Therefore, it may be the case
that m divides (k − l).
When m divides (k − l), either k = l or k − l = mq. This implies that, k = l + mq. Since, q ≥ 1,
k and l differ by m which is a contrdiction to the fact they both can differ by at most (m − 1).
From the above arguments, it follows that, k = l. We again get a contradiction as indices are dis-
tinct. Thus, our assumption that F (k, k) = F (l, l) is wrong and hence F values are distinct. This
shows that starting from mn till mn + (m − 1), one can give change using m and n as per the lin-
ear combination defined by the function F . That is, mn + 1 is given by mn + x(m − n) mod m
for some x. This completes the basis. For example, for denominations 3 and 5, we consider 3 × 5,
3×5+1(5−3) mod 5, 3×5+2(5−3) mod 5, 3×5+3(5−3) mod 5, 3×5+4(5−3) mod 5. We see that
3×5 = 3×5+0(5−3) mod 5, 3×5+1 = 3×5+3(5−3) mod 5, 3×5+2 = 3×5+1(5−3) mod 5, 3×5+3 =
3× 5 + 4(5− 3) mod 5, 3× 5 + 4 = 3× 5 + 2(5− 3) mod 5. This shows that all integers in the base set
can be expressed as a linear combination of 5 and 3.

Consider Rx, x ≥ mn + m. Note that x can be written as x = mn + rm + k mod m, where r is
the largest integer. The change for mn+ k mod m can be given as described in the base case and rm
can be accounted by giving r Rm. Thus, for any Rx, the currency change using Rm and Rn is possible
as established by the above arguments.

16. A monkey is expected to climb up a ladder of n steps. The Monkey can take either 1 step or 2 steps or
3 steps during each climbing. Thus, it is natural to get many different ways of climibing up a ladder.
Present a good lower bound and an upper bound for the number of ways of climibing up the ladder on
n steps. Prove your answer using MI.
Solution:
Let T (n) denote the number of ways to climb up a ladder of n steps. Then,
T (n) = T (n− 1) + T (n− 2) + T (n− 3), T (1) = 1, T (2) = 2, T (3) = (4).
Good lower bounds: T (n) ≥ Fn which is (1.618n) or T (n) ≥ ( 12

7 )n or T (n) ≥ 3
n
3 .

Good upper bounds: T (n) ≤ 2n or T (n) ≤ 3n−1 . The above bounds can be proved using MI.

17. Let A = {1, 2}. Construct the set ρ(A)×A, where ρ(A) is the power set (set of all subsets) of A.
Solution:
A = {1, 2} ; ρ(A) = {φ, {1}, {2}, {1, 2}}
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ρ(A)×A = {(φ, 1), (φ, 2), ({1}, 1), ({1}, 2), ({2}, 1), ({2}, 2), ({1, 2}, 1), ({1, 2}, 2)}

18. Given that A ⊆ C and B ⊆ D, show that A×B ⊆ C ×D.
Solution:
To show that A×B ⊆ C ×D, consider any arbitrary pair (a, b) ∈ A×B, where a ∈ A, b ∈ B.
A ⊆ C ⇒ a ∈ C and B ⊆ D ⇒ b ∈ D. Thus, (a, b) ∈ C ×D.
It follows that A×B ⊆ C ×D.

19. Given that A×B ⊆ C ×D, does it necessarily follow that A ⊆ C and B ⊆ D ?
Solution:
It is not necessary that if A×B ⊆ C ×D then, A ⊆ C and B ⊆ D.
Counter example:
Let A = {1, 2}, B = φ, C = {3} and D = {4}
A×B = φ,C ×D = {(3, 4)}
Clearly, A×B ⊆ C ×D but A 6⊆ C

20. Is it possible that A ⊆ A×A for some set A ?
Solution:
Yes. If A = φ then A ⊆ A×A.

21. For each of the following check whether ‘R’ is Reflexive, Symmetric, Anti-symmetric, Transitive, an
equivalence relation, a partial order.

(a) R = {(a, b) | a− b is an odd positive integer }.

(b) R = {(a, b) | a = b2 where a, b ∈ I+}.

(c) Let P be the set of all people. Let R be a binary relation on P such that (a, b) is in R if a is a
brother of b.

(d) Let R be a binary relation on the set of all strings of 0′s and 1′s, such that
R = {(a, b) | a and b are strings that have same number of 0′s}.

Solution:
Q.No Reflexive Symmetric Anti-symmetric Transitive Equivalence Poset

1. × × X × × ×
2. × × X × × ×
3. × × × X × ×
4. X X × X X ×
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22. Let R be a symmetric and transitive relation on set A. Show that if for every ‘a’ in A there exists
‘b’ in A, such that (a, b) is in R, then R is an equivalence relation.
Solution:
Given: ∀a ∃b (b ∈ A ∧ (a, b) ∈ R).
To prove: R is reflexive

Since R is symmetric, if (a, b) ∈ R ⇒ (b, a) ∈ R and since R is transitive, (a, b) ∈ R, (b, a) ∈ R ⇒
(a, a) ∈ R and this argument is true ∀a ∈ A. Therefore, R is reflexive. Hence R is an equivalence
relation.

23. Let R be a transitive and reflexive relation on A. Let T be a relation on A, such that (a, b) is in T if
and only if both (a, b) and (b, a) are in R. Show that T is an equivalence relation.
Solution:
To prove that T is equivalence relation we need to prove T is reflexive, T is symmetric and T is
transitive.
Given that (a, b) ∈ T iff (a, b), (b, a) ∈ R
Clearly (a, a) ∈ T ∀a ∈ A, This is true because R is reflexive. This proves that T is reflexive.
If (a, b) ∈ T we need to prove that (b, a) ∈ T . By the hypothesis (given condition), it is easy to see
that (b, a) ∈ T . Hence T is symmetric.
If (a, b) ∈ T and (b, c) ∈ T , we need to prove that (a, c) ∈ T .
(a, b) ∈ T → (a, b), (b, a) ∈ R
(b, c) ∈ T → (b, c), (c, b) ∈ R
Since R is transitive (a, c) ∈ R and (c, a) ∈ R, this implies that (a, c) ∈ T . Hence T is transitive.
Therefore, T is an equivalence relation.

24. Let R be a binary relation. Let S = {(a, b) | (a, c) ∈ R and (c, b) ∈ R for some c}. Show that if R is
an equivalence relation, then S is also an equivalence relation.
Solution:
To Prove: S is reflexive.
Since R is reflexive (a, a) ∈ R ∀a ∈ A. Clearly (a, a) ∈ S ∀a ∈ A. This proves that S is reflexive.
To prove:S is symmetric
(a, b) ∈ S → ∃x (a, x) ∈ R, (x, b) ∈ R
Since R is symmetric (x, a) ∈ R, (b, x) ∈ R.
Therefore by given definition, (b, a) ∈ S.
This proves that S is symmetric.
To prove: S is transitive
If (a, b) ∈ S and (b, c) ∈ S we need to prove that (a, c) ∈ S.
(a, b) ∈ S → ∃d (a, d), (d, b) ∈ R
R is symmetric → (d, a), (b, d) ∈ R
⇒ (a, b) ∈ R, (b, a) ∈ R
(b, c) ∈ S → ∃e (b, e), (e, c) ∈ R
R is symmetric ⇒ (e, b), (c, e) ∈ R
⇒ (b, c) ∈ R, (c, b) ∈ R
Since R is transitive, (a, c) ∈ R, (c, a) ∈ R ——(1)
Since R is reflexive, (c, c) ∈ R ——(2)

From (1) and (2) it follows that (a, c) ∈ S

Therefore, S is transitive and hence an equivalence relation.

25. Let R be a reflexive relation on a set A. Show that R is an equivalence relation if and only if (a, b)
and (a, c) are in R implies that (b, c) is in R.
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Solution:

Necessity: Given that R is an equivalence relation, we need to prove that (a, b), (a, c) ∈ R→ (b, c) ∈ R
Since R is symmetric, (a, b) ∈ R⇒ (b, a) ∈ R
Since R is transitive, (b, a), (a, c) ∈ R⇒ (b, c) ∈ R
Hence necessity is proved.

Sufficiency: To show that R is an equivalence relation, we need to show that R is symmetric and
transitive.
By definition, (a, b), (a, c) ∈ R⇒ (b, c) ∈ R
Also (a, c), (a, b) ∈ R⇒ (c, b) ∈ R
Therefore, R is symmetric.
To prove transitivity, if (x, y), (y, z) ∈ R then (x, z) ∈ R
(x, y) ∈ R, (a, x)&(a, y) ∈ R
(y, z) ∈ R, (a, y)&(a, z) ∈ R
(a, x)&(a, z) ∈ R⇒ (x, z) ∈ R. Hence R is transitive.
Therefore R is an equivalence relation. Hence sufficiency is proved.

26. Let A be a set with n elements. Using mathematical induction,

(a) Prove that there are 2n unary relations on A.

(b) Prove that there are 2n
2

binary relations on A.

(c) How many ternary relations are there on A ?

Solution:

1. Let us prove this by induction on number of elements in A, n.
Base Case: If n = 0 then, number of relations is 20 = 1 (Empty set). If n = 1 then, number of
unary relations is 2 = 21 (If A = {x} then, unary relations on A = {φ, x})
Hypothesis: Assume that the statement is true for n = k, k ≥ 1
Induction Step: Let A be the set with n = k + 1 elements, k ≥ 1.
Number of unary relations on a set with k + 1 elements = Number of unary relations on a set
with k elements + 2k ((k + 1)th element can be placed in each of 2k subsets of k elements) = 2k

+ 2k = 2k+1.

2. Let us prove this by induction on number of elements in A, n.
Base Case: If n = 0 then, number of relations is 20 = 1 (Empty set). If n = 1 then, number of

binary relations is 2 = 21
2

(If A = {x} then, A×A = {φ, (x, x)}).
Hypothesis: Assume that the statement is true for n = k, k ≥ 1
Induction Step: Let A be the set with n = k+1 elements, k ≥ 1. Let A = {x1, x2, . . . , xk, xk+1}
For k elements, number of binary relations are 2k

2

. For (k + 1)th element, we have the following
2k + 1 binary elements:
(x1, xk+1), (x2, xk+1), . . ., (xk, xk+1), (xk+1, x1), (xk+1, x2), . . ., (xk+1, xk), (xk+1, xk+1).

Therefore, number of binary relations for the set A = 2k
2

. 22k+1 = 2k
2+2k+1 = 2(k+1)2 .

3. Number of ternary relations on A = 2n
3

27. If P is a prime greater than 3, then P 2 has the form 12k + 1, where k is an integer.
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Solution 1:
Since P is a prime number, P is an odd number. This implies, P 2 is an odd number. Thus, P 2 − 1
(even number) is divisible by 4 (P 2 − 1 can be written as (P + 1)(P − 1), where P + 1 is even and
P − 1 is even). Also, P 2 − 1 is divisible by 3 (for any three consecutive integers P − 1, P, P + 1, any
one integer is divisible by 3. But, P is a prime number and > 3. Therefore, either P − 1 or P + 1 is
divisible by 3). We know that, Let a | b and c | b. If gcd(a, c) = 1 then, ac | b. Since gcd(4, 3) = 1, 12
divides P 2 − 1 i.e., P 2 − 1 = 12k, where k is any integer. Thus, P 2 = 12k + 1.

Solution 2:
Any prime number > 3 can be written in the form 6m ± 1, where m is a positive integer. Thus,
P 2 = 36m2 ± 12m+ 1 = 12(3m2 ±m) + 1 = 12k + 1, where k = 3m2 ±m.

28. If an integer is simultaneously a square and a cube (ex: 64 = 82 = 43), verify that the integer must be
of the form 7n or 7n+ 1.

Solution:
Direct proof: Let z = x2 and z = y3 for some x, y ∈ I. Note that any number x ∈ I can be represented
as x mod 7 = i, 0 ≤ i ≤ 6. This implies x2 mod 7 = j, j = {0, 1, 2, 4}. Similarly, y mod 7 = i, 0 ≤ i ≤ 6
implies that y3 mod 7 = k, k = {0, 1, 6}. It follows that if z mod 7 = 0 or z mod 7 = 1. Therefore,
z = 7n or z = 7n+ 1.

29. The circumference of a ‘roulette wheel’ is divided into 36 sectors to which the numbers 1, 2, . . . , 36
are assigned in some arbitrary manner. Show that there are 3 consecutive sectors such that the sum
of their assigned numbers is at least 56.

Solution:
Let ai denotes the sum of three consecutive sectors from sector i, 1 ≤ i ≤ 36. On the contrary, assume
that the sum of any three consecutive sectors is ≤ 55. Therefore,

36∑
i=1

ai ≤ 36× 55

3× (1 + 2 + . . .+ 36) ≤ (36× 55)

3× 36× 37

2
≤ (36× 55)

111 ≤ 110 ( a contradiction)

Thus, our assumption that the sum of any three consecutive sectors is ≤ 55 is wrong. Therefore, there
exist 3 consecutive sectors such that the sum of their assigned numbers is at least 56.

30. If there are 104 different pairs of people who know each other at a party of 30 people, then show that
some person has 6 or fewer acquaintances.

Solution:
On the contrary assume that all persons are having at least 7 acquaintances. Therefore, the number
of distinct acquaintance pair is at least 30× 7/2 = 105. This is contradiction to the fact that there are
104 different pair of acquaintances. Therefore, our assumption is wrong and it follows that there exist
at least a person with 6 or fewer acquaintances.

31. Prove by induction : For n ≥ 1, 8n − 3n is divisible by 5.
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Solution:
Base case: n = 1, 81 − 31 is divisible by 5. Induction hypothesis: Assume that 8n − 3n is divisible by
5 for all n ≥ 1. Induction step: For n ≥ 1, consider 8n+1 − 3n+1 = (8.8n − 3.3n) = (5 + 3)8n − 3.3n

= 5.8n+3(8n−3n). By the induction hypothesis, 8n−3n is divisible by 5 and hence, = 5.8n+3(8n−3n)
is divisible by 5. Therefore, we can conclude that 8n − 3n is divisible by 5 for all n ≥ 1.

32. Prove by induction: a number, given its decimal representation is divisible by 3 iff the sum of its digits
is divisible by three.

Solution:
Let us prove this by induction on number of digits, n.
Base Case: n = 1, clearly, then a number is divisible by 3 iff the sum of the digits is divisible by 3.
For example, the numbers 3,6,9 satisfy this case.
Hypothesis: Assume that the statement holds for n = k, k ≥ 1. i.e., a number composed of k digits
is divisible by 3 iff the sum of its digits is divisible by 3.
Induction Step: Let n = k + 1, k ≥ 1. Let x be a number composed of k + 1 digits. Our claim is to
prove that x is divisible by 3 iff the sum of the digits in x is divisible by 3.

Let the decimal expansion of x = akak−1 . . . a0 be,
x = ak10k + ak−110k−1 + . . .+ a0. −−−−−−−−− > (1)

Since, am10m can be written as am + am(10m − 1), equation (1) can be written as follows:

x = (ak + ak−1 + . . .+ a0) + (ak(10k − 1) + ak−1(10k−1 − 1) + . . .+ a1(101 − 1)),

Since, 3 divides 10n − 1, implies that 3 divides (ak(10k − 1) + ak−1(10k−1 − 1) + . . .+ a1(101 − 1)).
By the hypothesis, (ak−1 + . . . + a0) is divisible by 3 iff ak−1 . . . a0. Thus, x is divisible by 3 iff ak is
divisible by 3. i.e., x is divisible by 3 iff (ak + ak−1 + . . .+ a0) is divisible by 3. Therfore, x is divisible
by 3 iff the sum of the digits in x is divisible by 3.

33. Show that any integer composed of 3n identical digits is divisible by 3n. (for example: 222 is div by 3,
555,555,555 is div by 9)
Solution:
We shall prove this by induction on n.
Base Case: For n = 1, we note that any 3-digit integer with 3 identical digits is divisible by 3. Since,
for any k ∈ {1, . . . , 9}, kkk = k · (111). Further, 111 is divisible by 3. Therefore, kkk is divisible by 3.
Hypothesis: Assume that the statement is true for n = k, k ≥ 1.
Induction Step: For n = k + 1, k ≥ 1. Let x be an integer composed of 3k+1 identical digits. We
note that x can be written as
x = y × z
where y is an integer composed of 3k identical digits, and z = 102·3

k

+ 103
k

+ 1.
For example, x = 666666666 = 666 × 1001001 = y × (102·3

1

+ 103
1

+ 1). y is divisible by 3k by the
hypothesis and z is divisible by 3 (sum of the digits is divisible by 3). Thus x is divisible by 3k+1.

34. A person takes at least one tablet a day for 50 days. He takes 90 tablets altogether. Is it true that
during some sequence of consecutive days he has taken exactly 24 tablets. Justify your answer.
Solution:
Let ai be the number of tablets the patient has taken till the end of the ith day. Thus we have the
following sequence:
1 ≤ a1 < a2 < . . . < a50 = 90.
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Thus we have
1 + 24 ≤ a1 + 24 < a2 + 24 < . . . < a50 + 24 = 90 + 24.
i.e.,
25 ≤ a1 + 24 ≤ a2 + 24 ≤ . . . ≤ a50 + 24 = 114.
Thus, among all the numbers: a1, a2, . . . , a50, a1 + 24, . . . , a50 + 24; there are 100 numbers (pigeons)
and 114 (pigeon holes). So, there is no possibility of two numbers to be equal (Since a patient takes
at least one tablet a day). Thus, there is no sequence of consecutive days where the patient has taken
exactly 24 tablets.

35. Show that one of any n-consecutive integers is divisible by n.
Solution:
On the contrary, we assume that there does not exist a number divisible by n in a set of n consecutive
integers. We can place integer i in congruence class j, where j = i mod n, 1 ≤ j ≤ n−1 corresponding
to pigeon holes. Observe that n integers (pigeons) are there and by pigeonhole principle, there exist
a class with more than one integer, say a, b where a = x.n + r and b = y.n + r. Note that x and
y differ by at least one and it follows that there exist at least n + 1 consecutive integers from a to b
inclusive of both. This is a contradiction to the fact that there are n consecutive integers. Therefore
our assumption is wrong and one of any n-consecutive integers is divisible by n.

36. Show that among (n+ 1) positive integers less than or equal to 2n, there are 2 consecutive integers.
Solution:
Pigeon holes: (1, 2), (3, 4), . . . , (2n− 1, 2n), n pigeon holes
Pigeons: n+ 1 pigeons. Choose n+ 1 distinct numbers from the 2n positive integers. Place pigeon x
in the hole (a, b) if a = x or b = x.
PHP: At least 2 pigeons will be placed in a hole and since (n+1) integers are distinct those two pigeons
are consecutive numbers (by the definition of pigeon holes).

37. Show that in a group of five people (where any two people are either friends or enemies), there are not
necessarily three mutual friends or three mutual enemies.
Solution:
Consider a person A and divide the remaining 4 persons into two sets, friends and the enemies of A.
There exist at least two persons the friends set or in the enemies set of A by pigeonhole principle. We
can see the below possibilities

Cardinality of Cardinality of
friend set of A enemy set of A

2 2
1 3
3 1
0 4
4 0

Consider the possibility where there exist 2 friends B,E and 2 enemies C,D of A. If B and E are
friends, then there exist three mutual friends, {A,B,E}. Therefore, we consider a scenario where B
and E are enemies. Similarly, if C and D are enemies, then there exist three mutual enemies, {A,C,D}.
Therefore, we consider a scenario where C and D are friends. Now if B is a friend of C, and D is a
friend of E, then there does not exist three mutual friends or three mutual enemies in the scenario.
Scenario in short: friend relations (A,B), (B,C), (C,D), (D,E), (E,A).

38. Show that in a group of 10 people (where any two people are either friends or enemies), there are either
three mutual friends or four mutual enemies, and there are either three mutual enemies or four mutual
friends.
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Solution:
We shall prove there are either three mutual friends or four mutual enemies and the argument for the
other claim is symmetric.
Let A,B, . . . , J be the ten persons. Take a person A: divide the remaining 9 persons into friends set
of A and the enemies set of A. By PHP, d 92e = 5, at least five persons either in the friends set of A or
in the enemies set of A. Therefore, the possibilities are

We present case by case analysis among the above possibilities: at least 4 friends for A or at least 6

Cardinality of Cardinality of
friend set of A enemy set of A

5 4
6 3
7 2
8 1
9 0
4 5
3 6
2 7
1 8
0 9

enemies for A.
Case 1: At least 4 friends for A
With respect to A, assume that (B,C,D,E) are the 4 friends. If any two of (B,C,D,E) are friends,
then those two along with A forms 3 mutual friends. If none of them are friends, then (B,C,D,E)
form 4 mutual enemies.
Case 2: At least 6 enemies for A
w.l.o.g. assume that (B,C,D,E, F,G) are the 6 enemies for A. W.k.t. Among 6 people, there exist
either 3 mutual friends or 3 mutual enemies. If there are 3 mutual friends then there is nothing to
prove or if there are three mutual enemies then this 3 along with A form four mutual enemies.

39. Show that if n+1 integers are chosen from the set {1, 2, . . . , 2n} then there are always two which differ
by 1.
Solution:
Consider the groups {1, 2}, {3, 4}, . . . , {2n − 1, 2n} as pigeon holes. The n + 1 distinct integers form
the pigeons and by pigeon hole principle, there exist a group gk containing more than one integer; say
i, i+ 1 ∈ gk. This implies that among the n+ 1 distinct integers, there exist two {i, i+ 1} which differ
by 1.

40. Given 8 distinct integers (x1, x2, . . . , x8), show that there exist a pair with the same remainder when
divided by 7.
Label the pigeonholes with possible remainders when a number is divided by 7. i.e., labels are 0, 1, . . . , 6.
Thus there are 7 pigeonholes, and given that 8 distinct integers, by pigeonhole principle, there exist
at least one label (pigeon hole) having more than one integer. This implies that there exist a pair of
integers with same remainder when divided by 7.

41. Given 7 distinct integers, there must exist two integers such that the sum or difference is divisible by
6.

11



Like before, pigeon holes denote possible remainders when a number is divided by 6. Due to 7 distinct
integers, by pigeonhole principle, there exist at least one hole having more than one integer, say a, b.
It follows that difference of a and b is a multiple of 6. If both a and b leave remainder ’3’ then sum or
difference is divisible by 6.

42. Given n+ 1 distinct integers, then there is some pair of them such that their difference is divisible by
the positive integer n.
Each pigeonhole groups integers having same remainder when divided by n. Thus there are n pigeon-
holes and n + 1 distinct integers. By pigeonhole principle, there exist at least one remainder class
having more than one integer, say a, b. It follows that a = n.x + r and b = n.y + r. Without loss of
generality, let a > b. This implies that x > y and a− b = n(x− y). Therefore, difference of a and b is
a multiple of n.

43. Given 37 distinct positive integers, then there must be at least 4 of them that have the same remainder
when divided by 12.
Consider the pigeonholes to be the class of integers having same remainder when divided by 12. There
exist 37 = 12×3+1 distinct positive integers (pigeons) and 12 remainder classes (pigeonholes). There-
fore by generalized pigeonhole principle, there exist a remainder class having at least 3+1 = 4 integers.
Therefore there exist at least 4 distinct integers with same remainder.

44. A student has 37 days to prepare for an examination. From past experience she knows that she will
require no more than 60 hours of study. She also knows that she wishes to study at least 1 hour per
day. Show that no matter how she schedules her study time (a whole number of hours per day however)
there is a succession of days during which she would have studied exactly 13 hours.
Let si, 1 ≤ i ≤ 37 be the number of hours studied till ith day. Then,
s1 < s2 < . . . < s37 ≤ 60.
s1 + 13 < s2 + 13 < . . . < s37 + 13 ≤ 60 + 13 = 73.
Note that for all 1 ≤ i, j ≤ 37, si 6= sj where i 6= j. There exist 2× 37 = 74 summands (pigeons), and
73 distinct integer values (pigeonholes). Therefore, there exist two summands having same value. i.e.,
si = sj + 13 and this implies that si− sj = 13. Thus there exist a period of i− j consecutive days (day
j + 1, . . . , i) in which she spent 13 hours for studying.

45. Given n pigeons to be distributed among k pigeonholes:
What is a necessary and sufficient condition on n and k that, in every distribution, at least two pi-
geonholes must contain the same number of pigeons.
Consider the scenario in which pigeonhole Pi is filled with i pigeons, 0 ≤ i ≤ k − 1. If Pk is filled with
any value between 0 and k−1, then there are two pigeon holes containing the same number of pigeons.
Moreover, if Pk contains any number greater than k − 1 (k or more) then our claim need not be true
always. Therefore, the number of pigeons n = x + y, where x = (0 + 1 + . . . + k − 1) and y ≤ k − 1.

i.e. n ≤ (k−1)k
2 + k − 1.

46. What is the value of n (minimum n) such that in any group of n people you see either 3 mutual enemies
or 4 mutual friends.
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Minimum value of n for which in any group of n people there exist either 3 mutual enemies or 4 mutual
friends is 9. Consider 9 persons p1, p2, . . . , p9 and note that

Figure 1: Fig: An illustration on n = 8

In the above figure, node vi, 1 ≤ i ≤ 8 represents people and edge between node represent friend
relation between them. The figure is a counter example illustrating that in a group of 8 people, there
need not be 3 mutual enemies or 4 mutual friends. Now we prove that there exist either 3 mutual
enemies or 4 mutual friends among a group of 9 people. Consider 9 nodes representing people with
every pair of vertices connected by an edge representing relationships. The edge is colored Blue for
friend and Red for enemy relationships. We now show that their exist a red triangle (representing 3
mutual enemies) or blue K4 (4 vertices with 6 edges among them) representing 4 mutual friends. Note
NB(x) = {y | (x, y) is blue} and NR(x) = {y | (x, y) is red}
Case 1: If there exist a vertex vi with at least 6 blue edges incident on it, then in NB(vi), there
exist either a red triangle induced on R ⊆ NB(vi) or blue triangle B′ induced on B ⊆ NB(vi) as
|NB(vi)| = 6. Therefore there exist a red triangle induced on R or a blue K4 induced on B′ ∪ vi in the
graph.
Case 2: If there exist a vertex vi with at least 4 red edges incident on it, then we can see the following.
If there exist vj , vk ∈ NR(vi), such that (vj , vk) is red, then {vi, vj , vk} induces a red triangle. On the
other hand, if there does not exist vj , vk ∈ NR(vi), such that (vj , vk) is red, then {vi} ∪NR(vi) has an
induced K4.
Case 3: All the vertices vi in the graph are having at most 3 red edges and at most 5 blue edges
incident on them. Since all edges are colored either blue or red, it follows that in the graph all vertices
have exactly 3 red edges and 5 blue edges incident on them. It follows that there are (9× 3)/2 = 13.5
red edges, similarly, there are (9 × 5)/2 = 22.5 blue edges. Note that sum of the degrees in a graph
is twice the number of edges, which implies that the number of edges is always even. Further, the set
of edges can be partitioned into ’red’ and ’blue’ edges. In our case, degree sums due to ’red’ edges
and ’blue’ edges yield a non-integer, a contradiction. Therefore, this case does not occur. Among the
mutually exclusive and exhaustive cases discussed, case 1, 2 shows that there exist either a red triangle
or a blue K4 and in case 3 such a graph does not exist. Therefore there exist 3 mutual enemies (red
triangle) or 4 mutual friends (blue K4 ) in a group of at least 9 people (vertices).
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47. Using PIE (principle of inclusion and exclusion), Find the number of positive integers not exceeding
100 that are either odd or the square of an integer
Solution:
Number of odd numbers = |O| = 50 (half of 100)
Number of square numbers = |S| = 10 (square root of 100)
Number of odd square numbers = |O ∩ S| = 5 (half of the above number)
|O ∪ S| = |O|+ |S| − |O ∩ S|
= 50 + 10− 5 = 55
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