
Indian Institute of Information Technology Design and Manufacturing,
Kancheepuram, Chennai 600 127, India

An Autonomous Institute under MHRD, Govt of India

http://www.iiitdm.ac.in
COM 209T Design and Analysis of Algorithms -Lecture Notes

Instructor
N.Sadagopan

Scribe:
P.Renjith

Order Statistics

Objective: In this lecture, we shall discuss how to find simultaneous minimum and maximum,
simultaneous minimum and second minimum, and kth minimum efficiently.

1. Finding Minimum and Maximum: A trivial approach is to scan the array twice, which
incurs (n − 1) comparisons for minimum and (n − 2) comparisons for maximum, together
2n− 3 comparisons for finding simultaneous minimum and maximum.
A non-trivial approach is to group the elements into pairs, i.e., (a1, a2), (a3, a4), . . . , (an−1, an).
Find minimum and maximum for each pair which incurs one comparison for each pair, over
all n

2 comparisons to get n
2 minimums and n

2 maximums. Perform a linear scan on n
2 mini-

mums to get the actual minimum, this step incurs n
2 − 1 comparisons. Similarly, perform a

linear scan on n
2 maximums to get the actual maximum, this step incurs n

2 − 1 comparisons.
Thus, this approach incurs n

2 + n
2 − 1 + n

2 − 1 = 3n
2 − 2 comparisons, better than the previous

approach.
Another non-trivial approach is to find minimum and maximum using divide and conquer
method. The cost given by the recurrence: T (2) = 1, T (n) = 2T (n2) + 2. The additive factor
’2’ in the recurrence denotes the cost for updating minimum and maximum at each step.
T (n) = 2T (n2) + 2
T (n) = 22T (n4) + 22 + 2
after k − 1-steps, T (n) = 2k−1T (n

2k−1) + 2k−1 + . . .+ 22 + 2

Assuming n = 2k, T (n) = 2k−1 · T (2) + 2k − 1− 1
T (n) = n

2 + n− 2 = 3n
2 − 2.

Thus divide and conquer approach is as good as the previous approach. Interestingly, the
last two approaches are the best ever possible, i.e. any algorithm for finding minimum and
maximum incurs at least 3n

2 − 2 comparisons.

2. Finding Minimum and Second Minimum: Similar to the above problem, trivial ap-
proach takes 2n − 3 comparisons and divide and conquer approach takes 3n

2 − 2 compar-
isons to output minimum and second minimum. It is natural to ask, can we do better
than 3n

2 − 2 comparisons. We shall now present an approach that incurs n + log n − 2
comparisons. Unlike minimum and maximum, minimum and second minimum are related,
i.e., the candidates for second minimum are those elements that were compared with mini-
mum at some iteration of the algorithm. The algorithm is described as follows; form pairs
(a1, a2), (a3, a4), . . . , (an−1, an) and find a minimum for each pair. Using these local mini-
mums, pair them and find the next set of local minimums, proceed this way to get the actual
minimum. We naturally obtain a tree like structure and the height of the tree is log n. Fur-
ther, the actual minimum appears at every level. To get the minimum, the cost is n−1. Since
the height of the tree is log n, the minimum must have been compared with log n elements
and all are candidates for the second minimum, we need log n− 1 comparisons to obtain the

second minimum. Overall, n− 1 + log n− 1 = n+ log n− 2 comparisons.

We shall now present an efficient algorithm to find ith minimum in an array of integers. A trivial
algorithm is to scan the array linearly i times which gives O(ni) solution. We shall now see an
O(n) algorithm to find ith minimum which is popularly known as ith order statistics in the literature.

Input: A set A of n distinct numbers, an integer i, 1 ≤ i ≤ n
Goal: Find ith order statistic. The ith order statistic is the ith smallest element.

To solve the above problem, another trivial method is to sort the given array in ascending or-
der, and then find the ith element. From the lower bound theory argument it is clear that any
sorting incurs a cost of Ω(n log n). A natural question is to ask for a more efficient solution to this
problem. That is, is it possible to obtain the ith smallest element in linear time? The solution
presented here is from the text Introduction to Algorithms, CLRS.
Approach

• Divide the n elements into bn5 c groups of 5 elements each, and at most one group contains n
mod 5 elements.

• Find the median of each of the dn5 e groups using the insertion sort. Since there are 5

elements, the insertion sort takes at most 10 comparisons for each group which

is O(1). Overall, n
5 ·O(1) = O(n)

• Using the n
5 medians, recursively find the median of medians. i.e, form n

25 groups of size 5
each (each group contains 5 medians). Recursion bottoms out when the group size is one.
cost for finding the median of medians is T (n) = T (n5) +O(n)

• Partition the input array around the median-of-medians x such that x is the kth small-
est element. Invoke quick sort PARTITION(A,x) with pivot as x and let k be the

position of x at the end of partition. Let L and R be the left and right partition

with respect to x

• If i = k, then return x, otherwise recursively find the ith smallest element. That is, if i < k,
then recursively find the ith smallest element in L, otherwise find the (i−k)th smallest element
in R.

We know that partition() routine incurs O(n) for each call, however, due to pruning (we either work
with L or R), the size of the recursive subproblem is strictly less than n. We shall now analyze
the size of the recursive subproblem using which we can estimate the run-time of order statistics.
Towards this end, we consider the illustration given in Figure 1 which depicts the position of x and
its relation with the other elements.
The n elements are represented by small circles, and each group of 5 elements occupies a column.
The medians of the groups are whitened, and the median-of-medians x is labeled. (when finding the
median of an even number of elements, we use the lower median.) Arrows go from larger elements
to smaller, from which we can see that 3 out of every full group of 5 elements to the right of x are
greater than x, and 3 out of every group of 5 elements to the left of x are less than x. The elements
known to be greater than x appear on a shaded background.

2

Figure 1: An illustration, Source: CLRS

To analyze the running time we shall determine a lower bound on the number of elements that are
larger than the element x. Note that, at least half of the dn5 e groups contribute at least 3 elements
that are greater than x, except for the one group that has fewer than 5 elements if 5 does not
divide n exactly, and the one group containing x itself. Discounting these two groups, it follows
that the number of elements greater than x is at least 3(12d

n
5 e − 2) ≥ 3n

10 − 6 elements Therefore,
after pruning, the recursive call is on n− (3n10 − 6) = 7n

10 + 6 elements.
Similarly, the number of elements that are smaller than x is at least 3(12d

n
5 e−2) ≥ 3n

10 −6 elements.

In either case, the recursive call is on the subproblem of size at most 7n
10 + 6.

The recurrence is therefore, T (n) = T (
⌈n

5

⌉
) +O(n) + T (

⌈
7n

10
+ 6

⌉
) +O(n)

T (n5) in the recurrence captures the recursive subproblem of median-of-medians computation and
the cost of finding n

5 medians is O(n). Further, another O(n) is spent by the partition() to prune
unnecessary elements and the reduced subproblem size is at most 7n

10 + 6. After simplifying, we get,

T (n) = T (
⌈n

5

⌉
) + T (

⌈
7n

10
+ 6

⌉
) +O(n)

To solve this recurrence, we employ guessing strategy and guess T (n) ≤ c · n

≤ c(n
5

+ 1) + c(
7n

10
+ 6) + dn ≤ 7c+

9cn

10
+ dn

≤ 7c+
10cn

10
− cn

10
+ dn ≤ 7c+ cn− cn

10
+ dn

≤ 7c+ cn− cn

10
+ dn

This expression must be at most cn. i.e. what is the value of c and d such that 7c+cn− cn
10

+dn ≤ cn
If no such c and d exist, then the guess is incorrect.

7c− cn

10
+ dn ≤ 0 =⇒ c(

n

10
− 7) ≥ dn =⇒ c(

n− 70

10
) ≥ dn

3

c ≥ 10 · d · n
n− 70

For n ≥ 71, there exist c satisfying the above constraint, and therefore T (n) = O(n). Since the
analysis works for n ≥ 71, for problem size less than 71, to find order statistics, we employ insertion
sort. Since 71 is a constant, the insertion sort takes O(1) effort. A closer at the analysis tells us

that for every n ≥ 140,
n

n− 70
≤ 2, and hence, c ≥ 20.d. This implies that for a fixed value of d, we

could fix c = 20.d. Also, similar to the above observation, for n < 140, we see that the algorithm
takes constant effort and the recurrence works fine for n ≥ 140. This completes the analysis, and
we conclude

T (n) =

{
O(1) if n < 140
O(n) if n ≥ 140

It is now natural to ask, what is the significance of choosing group size to be ’5’. Will the above
analysis work fine if it is ’3’ or ’7’. For ’7’, the analysis works fine and yield O(n) algorithm for
order statistics whereas group size ’3’ leads to O(n log n) algorithm and hence ’3’ is not chosen in
practice.
Application: Order statistics can be used as a black box in quick sort so that the worst case
run-time is θ(n log n). The classical quick sort without any additional black box, incurs θ(n2) in
the worst case as we may get a skewed partition at each iteration of the algorithm. However, if
pivot is carefully chosen so that we get a balanced partition (good split) at every iteration, then
we get T (n) = 2T (n2) + n, which is θ(n log n). Here is an approach to achieve good split at every
iteration: invoke order-statistics() with k = n

2 , i.e. ask for (n2)nd min and pass that to partition
as the pivot element. Clearly, the output of partition guarantees a good split. Similarly, for each
recursive subproblem of size m, ask for (m2)nd min using order-statistics(), subsequently, partition
is done with respect to (m2)nd min. Therefore, the total cost is: T (n) = 2T (n2) + O(n) + O(n),
which is T (n) = θ(n log n). Note the first O(n) in the expression is for order-statistics() and the
second O(n) is for partition().

Acknowledgements: Lecture contents presented in this module and subsequent modules are
based on the following text books and most importantly, author has greatly learnt from lectures by
algorithm exponents affiliated to IIT Madras/IMSc; Prof C. Pandu Rangan, Prof N.S.Narayanaswamy,
Prof Venkatesh Raman, and Prof Anurag Mittal. Author sincerely acknowledges all of them. Spe-
cial thanks to Teaching Assistants Mr.Renjith.P and Ms.Dhanalakshmi.S for their sincere and
dedicated effort and making this scribe possible. Author has benefited a lot by teaching this course
to senior undergraduate students and junior undergraduate students who have also contributed to
this scribe in many ways. Author sincerely thanks all of them.

References:
1. E.Horowitz, S.Sahni, S.Rajasekaran, Fundamentals of Computer Algorithms, Galgotia Publica-
tions.
2. T.H. Cormen, C.E. Leiserson, R.L.Rivest, C.Stein, Introduction to Algorithms, PHI.
3. Sara Baase, A.V.Gelder, Computer Algorithms, Pearson.

4

