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Sorting Algorithms

Objective: This module focuses on design and analysis of various sorting algorithms using paradigms such
as Incremental Design and Divide and Conquer.

Sorting a list of items is an arrangement of items in ascending (descending) order. We shall discuss six
different sorting algorithms. We begin our discussion with Bubble sort.

1 Bubble Sort

Bubble sort is a comparison based sorting algorithm wherein comparing adjacent elements is a primitive
operation. In each pass, it compares the adjacent elements in the array and exchanges those that are not
in order. Basically, each pass through the array places the next largest value in its proper place, hence the
number of comparisons reduces by one at each pass. In other words, each item “bubbles”up to the location
where it is supposed to be in the sorted sequence. This invariant is maintained by the algorithm in each
pass and hence, bubble sort correctly outputs the sorted sequence. For an n-element array, the below pseudo
code requires n− i comparisons for the ith iteration (Pass).

Origin: Initially, Bubble sort was referred to as “Sorting by exchange” in [1, 2] and further, it is re-
ferred to as “Exchange Sorting” in [3, 4]. The term “Bubble Sort ” was first used by Iverson in 1962 [5].

Invariant: At the end of ith iteration, the last i elements contain i largest elements. i.e. a[n] contains
the largest, a[n−1] contains the second largest, and so on. At the end of nth iteration, the array is sorted as
it contains n largest elements. At the end of ith iteration, (n− i+ 1)th position contains the right element.

Pseudo code: Bubble Sort(Array a[ ])

1. begin
2. for i = 1 to n− 1
3. for j = 1 to n− i
4. if (a[j] > a[j + 1]) then
5. Swap (a[j], a[j + 1])
8. end

Run-time Analysis

We shall analyze the run-time by considering the best case input and the worst case input. Interestingly,
for bubble sort, irrespective of the nature of input, the number of passes to be made is n − 1. Further,
the number of comparisons during ith pass is n − i. By the end of every pass, at least one element is
placed in its right position. In case of best case input, there is no swapping done and for every other input
swapping may be required during each pass. Since the underlying model focuses on the number of com-
parisons (not on the number of swaps as it is a less dominant operation), the number of comparisons is
n− 1 + n− 2 + . . .+ 2 + 1 = O(n2) for all inputs.



Trace of Bubble Sort Algorithm

Input: a[9] = {54, 26, 93, 17, 77, 31, 44, 55, 20}

Pass 1:

Pass 2:

Pass 3:
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Pass 4:

Pass 5:

Pass 6:
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Pass 7:

Pass 8:
In this pass, no exchange for all 8 comparisons. Since, the input array size is 9, the number of passes is 8.

The algorithm terminates and the input array contains the sorted sequence.

2 Insertion Sort

This is a commonly used sorting algorithm with applications from arranging cards in a card game to ar-
ranging examination answer sheets based on students’ roll number. Insertion sort follows incremental design
wherein we construct a sorted sequence of size two, followed by a sorted sequence of size three, and so on. In
this sorting, during ith iteration, the first (i− 1) elements are sorted and ith card is inserted to the correct
place by performing linear search on the first (i − 1) elements. This algorithm performs well on smaller
inputs and on inputs that are already sorted.
Origin: Insertion sort was mentioned by John Mauchly as early as 1946, in the first published discussion
on computer sorting [6].

Pseudo code: Insertion Sort(a[ ]) Source: CLRS

1. begin
2. for j = 2 to n
3. key = a[j]
4. i = j − 1
5. while i > 0 and a[i] > key
6. a[i+ 1] = a[i]
7. i = i− 1
8. a[i+ 1] =key
9. end

Run-time Analysis

We shall analyze the run time of insertion sort by considering its worst case and best case behavior. In the
below table, for each line of the pseudo code, the cost (the number of times the line is executed) incurred
in best and worst case inputs is given. The table presents precise estimate using step count analysis.
Alternatively, the cost can also be obtained using recurrence relation.
Recurrence relation in worst case: T (n) = T (n − 1) + n − 1, T (2) = 1, solving this using substitution
method/recurrence tree method yields T (n) = O(n2). Recurrence relation in best case: T (n) = T (n−1)+1,
T (2) = 1, and the solution is T (n) = O(n).
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Table 1: Step Count Analysis

Pseudo code Worst Case Analysis Best Case Analysis
I/P: Descending Order I/P: Ascending Order

for j = 2 to n n n
key = a[j] n− 1 n− 1
i = j − 1 n− 1 n− 1

while i > 0 and a[i] > key
∑n

j=2(j) = n(n+1)
2 − 1

∑n
j=2(1) = n− 1

a[i+ 1] = a[i]
∑n

j=2(j − 1) = n(n−1)
2 0

i = i− 1
∑n

j=2(j − 1) = n(n−1)
2 0

a[i+ 1] =key n− 1 n− 1

Total 3n2

2 + 7n
2 − 4 5n− 4

= θ(n2) = θ(n)

Trace of Insertion Sort Algorithm

As mentioned, at the end of ith iteration, the first i elements are sorted. So, at the end of nth iteration and
for this example, at the end of seventh iteration the given seven elements are sorted.
Input: a[7] = {−1, 4, 7, 2, 3, 8,−5}

Iteration 1: Iteration 2:

Iteration 3:
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Iteration 4:

Iteration 5:

Iteration 6:
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Note: If the input is already sorted, for example, (1, 2, . . . , n), then insertion sort incurs (n − 1) = θ(n)
comparisons. This is a best case input of insertion sort. On the other hand, if the input is in decreasing
order, (n, n− 1, . . . , 2, 1), then insertion sort incurs θ(n2) comparisons and it becomes the worst case input.

3 Selection Sort

It is a natural sorting algorithm [1] in which we find minimum, second minimum, third minimum and so
on and arrange them in increasing order. Like bubble sort, irrespective of the input, during ith stage this
algorithm incurs (n − i) comparisons. Further, the algorithm does linear search to find ith minimum. The
invariant maintained by the algorithm is that at the end of ith iteration, position i contains the right element.

Pseudocode: Selection Sort(a[ ])

1.begin
2. for j = 1 to n− 1
3. min = j
4. for i = j + 1 to n
5. if a[i] < a[min]
6. min = i
7. Swap(a[j], a[min])
8.end

Run-time Analysis

Note Line 5 of Selection Sort is executed for all inputs. During ith iteration, the statement is executed (n− i)
times. Therefore, the total cost is n − 1 + n − 2 + . . . + 1, which is O(n2). Alternatively, the recurrence
relation both in worst case and best case is T (n) = T (n− 1) + n− 1, T (2) = 1. Thus, T (n) = θ(n2).

Trace of Selection Sort Algorithm

Input: a[7] = {−1, 5, 3, 9, 12, 4, 8, 23, 15}
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4 Merge Sort

Merge Sort is based on the paradigm divide and conquer which has divide and conquer (combine) phases.
As part of divide phase which is a top-down approach, the input array is split into half, recursively, until
the array size reduces to one. That is, given a problem of size n, break it into two sub problems of size n/2,
again break each of this sub problems into two sub problems of size n/4, and so on till the sub problem size
reduces to n/2k = 1 for some integer k. (see Figure 1(a)). As part of conquer phase which is a bottom-up
approach, we combine two sorted arrays of size one to get a sorted array of size two, and combine two sorted
arrays of size two to get a sorted array of size 4, and in general, we combine two sorted arrays of size n/2
to get a sorted array of size n. Conquer phase happens when the recursion bottoms out and makes use of a
black box which takes two sorted arrays and merges these two to produce one sorted array. In the example
illustrated in Figure 1(b), at the last level , the black box combines the sorted array A = {1} and the sorted
array B = {4} and results in a sorted array {1, 4}. Similarly, it combines the array {−1} and {8} and results
in {−1, 8}. This process continues till the root which eventually contain the sorted output for the given
input.
Origin: Merge sort is one of the very first methods proposed for computer sorting (sorting numbers using
computers) and it was suggested by John Von Neumann as early as 1945 [6]. A detailed discussion and
analysis of merge sort was appeared in a report by Goldstine and Neumann as early as 1948 [7].

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n/2 = 1k n/2 = 1k 11

1, 4, 2 8, -1, 0

1, 4 2 8, -1 0

1 4

Split Phase

1, 4, 2, 8, -1, 0

8 -1

Input: 1, 4, 2, 8, -1, 0

1 4 8 -1

1, 4 -1, 82 0

1, 2, 4 -1, 0, 8

-1, 0, 1, 2, 4, 8

Combine Phase

(a) (b)

Figure 1: (a) Split phase of merge sort (top-down) (b) Conquer phase of merge sort (bottom-up)
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Pseudocode: Merge-Sort(A, p, r) Source: CLRS

begin
1. if p < r
2. q = bp+r

2 c
3. Merge-Sort(A, p, q)
4. Merge-Sort(A, q + 1, r)
5. Merge(A, p, q, r)
end

Merge(A, p, q, r)

begin
1. n1 = q − p+ 1
2. n2 = r − q
3. Create arrays: L[1..n1 + 1] and R[1..n2 + 1]
4. for i = 1 to n1
5. L[i] = A[p+ i− 1]
6. for j = 1 to n2
7. R[j] = A[q + j]
8. L[n1 + 1] =∞
9. R[n2 + 1] =∞
10. i = 1
11. j = 1
12. for k = p to r
13. if L[i] ≤ R[j]
14. A[k] = L[i]
15. i = i+ 1
16. else A[k] = R[j]
17. j = j + 1
end

Trace of Merge Sort Algorithm

We shall now trace the pseudo code using the following example.
The input array : A = {1, 4, 2, 8,−1, 0}; Start Index : p = 1 ; End Index : r = 6.
Initial call: Merge-Sort(A, 1, 6)
Since, 1 < 6, (p < r) is true and it executes all three statements inside if.
q = b 1+6

2 c = 3
Thus, Merge-Sort(A, 1, 3), Merge-Sort(A, 4, 6), Merge(A, 1, 3, 6) must be executed in order.
Note: Since Merge-Sort(A, 1, 3) is a recursive call, when the recursion bottoms out with respect to this
recursive call, the two statements following it will be executed. Hence, we need to remember the current
value of p, q, r for which compiler makes use of system stack (activation record) where the return address
and the current value of p, q, r are stored.
When we call Merge-Sort(A,1,3), since it is a recursive call, there will be a record in the stack contain-
ing Merge-Sort(A,4,6), which will be taken care later, and there will also be record for merge containing
Merge(A,1,3,6).
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Recursive calls - contents
of the stack

Reasoning

MergeSort(2,2) a sequence of recursive call starting from (1, 6)
Merge(1,2)
MergeSort(3,3)
Merge(1,3)
MergeSort(4,6)
Merge(1,6)

Recursion bottoms out with respect to (1, 1), which triggers popping the top of
the stack: MergeSort(2,2). Again, recursion bottoms out with respect to (2, 2)
and thus Merge(1,2) is popped out. The Merge(1,2) is executed which sorts the
array (1, 2). MergeSort(3,3) is executed next and so on. When MergeSort(4,6)
is popped out, some more push are done into the stack.

Merge(1,6) Content of the stack when MergeSort(4,6) is popped out.
MergeSort(5,5)
Merge(4,5)
MergeSort(6,6)
Merge(4,6)
Merge(1,6)

Recursion bottoms out with respect to (4, 4) which triggers a sequence of pop
from the stack. Accordingly, Merge() is executed to sort subarrays. Finally,
Merge(1,6) sorts the entire array using the sorted subarrays (1, 3) and (4, 6).

Run-time Analysis

Divide phase takes O(1) time at each stage to create two sub problems. The run time of combine phase
depends on the run time of MERGE() routine. Merge routine incurs m+n comparisons to combine two sorted
arrays of size m and n. This number can be reduced if we fine tune the code as follows: instead of appending
∞ at the end of each array, if the L array is exhausted first, then simply copy of the rest of R array into
the output array. Similarly, if the R is array is exhausted first, then copy the rest of L array into A. This
approach incurs min(|L|, |R|) in best case and |L|+ |R| − 1 in worst case. Thus, the number of comparisons
to merge two sorted arrays of size m and n into one sorted array of size m + n is at most m + n − 1, this
implies that at each stage merge() takes O(n). Therefore, the total time taken by merge sort is given by the
recurrence relation: T (n) = 2T (n/2) +O(1) +O(n), and the solution is θ(n log n).

Remarks:

1. The sorted arrays A = (1, 3, 5, 7, 9) and B = (2, 4, 6, 8, 10) of size 5 each incur 9 comparisons by
merge() routine to get a sorted sequence {1, 2, . . . , 9, 10}. In general, m + n − 1 comparisons if A =
(1, 3, . . . ,m− 2,m) and B = (2, 4, . . . , n− 2, n), where m = 2k + 1 and n = 2l for some integers k and
l.

2. The sorted arrays A = {1, 2, 3, 4, 5} and B = {6, 7, 8, 9, 10} incur five comparisons to get a sorted
sequence {1, 2, . . . , 9, 10}. In general, A = (1, 2, . . . ,m) and B = (m + 1, . . . , l) incur min(m,n)
comparisons, where n = l −m.

3. There are log n+ 1 levels in the recurrence tree.

4. All leaves (sub problems of size one) are at level log n and there are 2logn = n leaves.
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5 Quick Sort

Quick sort is another sorting algorithm that follows divide and conquer strategy. In this sorting, we pick a
special element pivot and the given array is partitioned with respect to the pivot element x. i.e., elements
that are smaller than x will be in one partition and the elements that are greater than x will be in another
partition. This process is done recursively till sub problem size becomes one. The pivot element, in principle
can be any element in the array, however, for our discussion we choose to work with the last element of the
array.

Origin: The quick sort algorithm was developed in 1959 by Tony Hoare while he was a visiting student
at Moscow State University. At that time, Hoare worked on a project on machine translation for National
Physical Laboratory. As part of the translation process, he had to sort the words of Russian sentences prior
to looking them up in a Russian-English dictionary which was already sorted in alphabetic order and stored
in magnetic tape [8]. To fulfill this task he discovered Quick Sort and later published the code in 1961 [9].

Pseudocode: Quick-Sort(A, p, r) Source: CLRS

begin
1. if p < r
2. q = Partition(A, p, r)
3. Quick-Sort(A, p, q − 1)
4. Quick-Sort(A, q + 1, r)
end

Partition(A, p, r)

begin
1. x = A[r]
2. i = p− 1
3. for j = p to r − 1
5. if A[j] ≤ x then
6. i = i+ 1
7. Swap(A[i], A[j])
8. Swap(A[i+ 1], A[r])
9. Return i+ 1
end
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Trace of Quick Sort Algorithm

A= { 2, 8, 7, 1, 3, 5} ; p = 1 ; r = 6

Quick-Sort(A, 1, 6) :

q = Partition(A,1,6) = 4

              q = Partition(A,1,3) = 3

Partition(A,1,6) :

x = A[6] = 5 ; i =0

j = 1 : 2 <= 5 so i = 1 and swap(A[1],A[1])
             Thus,  A = {2,8,7,1,3,5}

j = 2 : 8 <= 5 is false

j = 3 : 7 <= 5 is false

Stack :Partition(A,p,r) Tree :

5

2,1,3 7,8A[5,6]

Quick-Sort(A, 1, 3) :

j = 4 : 1 <= 5 so i = 2 and swap(A[2],A[4])
             Thus,  A = {2,1,7,8,3,5}

j = 5 : 3 <= 5 so i = 3 and swap(A[3],A[5])
             Thus,  A = {2,1,3,8,7,5}
swap(A[4],A[6]). Thus,  A = {2,1,3,5,7,8}
Return 4

Quick-Sort

A[5,6]

5

2,1,3 7,8

3

2,1

Partition(A,1,3) :

x = A[3] = 3 ; i =0

j = 1 : 2 <= 3 so i = 1 and swap(A[1],A[1])
             Thus,  A = {2,1,3,5,7,8}

j = 2 : 1 <= 3 so i = 2 and swap(A[2],A[2])
             Thus,  A = {2,1,3,5,7,8}

swap(A[3],A[3]). Thus,  A = {2,1,3,5,7,8}
Return 3

Quick-Sort(A, 1, 2) :

Same as above

 q = Partition(A,1,2) = 1 Pop(Quick-Sort): 
           Quick-Sort(A,5,6)

Quick-Sort

Partition(A,1,2) :

x = A[2] = 1 ; i =0

j = 1 : 2 <= 1 is false

swap(A[1],A[2]). Thus,  A = {1,2,3,5,7,8}
Return 1

5

2,1,3 7,8
3

2,1
1

2

Quick-Sort(A, 5, 6) : q = Partition(A,5,6) = 6

Partition(A,5,6) :

x = A[6] = 8 ; i =p-1 = 4

j = 5 : 7 <= 8 so i = 5 and swap(A[5],A[5])
             Thus,  A = {1,2,3,5,7,8}

Stack :Partition(A,p,r) Tree :

swap(A[6],A[6]). Thus,  A = {1,2,3,5,7,8}
Return 6

Quick-Sort

5

2,1,3 7,8
3

2,1
1

2

8

7

Invariant

Note that at the beginning of iteration j of the quick sort the following invariant is true: the first i elements
are less than or equal to the pivot x (window 1), the elements in indices i + 1, . . . , j − 1 are greater than
x (window 2), and we cannot say anything about (whether the value is smaller/larger than the pivot) the
elements in the indices j, . . . , n. During iteration j, the value at A[j] is compared with x. If A[j] > x then
window-2 increases by one. Otherwise, the first element of window-2 is swapped with x and the window-1
increases by one.
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Run-time Analysis

The recursion for quick sort depends the size of recursive subproblems generated at each stage of the recur-
sion. Since the pivot can take any value, the size of a sub problem can take any value in the range [0..n− 1].
I.e., T (n) = T (k)+T (n−k−1)+O(n), T (2) = 1 where k is the size of the window-1 at the end of n iterations.
The size of the other recursive problem is n−k−1 (the total elements minus the pivot and size of window-1).

In best case, each subproblem has the same size; a balanced split or nearly a good split; T (n) = T (n/2) +
T (n/2 − 1) + O(n) or T (n) = T (n/2 − 2) + T (n/2 + 1) + O(n). For unbalanced split the recurrence
looks like: T (n) = T (n/3 − 1) + T (2n/3) + O(n) or T (n) = T (n/6) + T (5n/6 − 1) + O(n) or in general
T (n) = T (α · n) + T ((1 − α) · n) + O(n), α < 1. Note that the O(n) component in T (n) is the cost of the
partition routine. For all of the above recurrence relations, using the recurrence tree technique, one can show
that T (n) = O(n log n). Therefore, the best case input of quick sort incurs O(n log n) to sort an array of n
elements.

In worst case, the size of one recursive problem is zero or a very small non-zero constant and the other
sub problem size is nearly n. I.e., T (n) = T (n− 1) +O(n) or T (n) = T (n− 4) + T (3) +O(n) or in general
T (n) = T (n− l) + O(l) + O(n) where l is a fixed integer. Clearly, using the substitution or recurrence tree
method, we get T (n) = θ(n2). An example for worst case input is any array in ascending or descending order.

Remarks:
1. If the input is in increasing order, then it becomes a best case input for insertion sort whereas it becomes
the worst case input for quick sort.
2. An example for the best case input of quick sort is {1, 3, 2, 5, 7, 6, 4}; every time the pivot element divides
the array into two equal halves. This is true because the pivot at each iteration is the median.
3. One can get a best case input by taking a labelled balanced binary search tree T (nodes are filled with
suitable values respecting BST property) and running post-order traversal on T . The resulting post-order
sequence is an example input for best case.
4. Any increasing or decreasing sequence is an example input for the worst case input of quick sort.
5. Although, the run-time of quick sort is θ(n2) in worst case, for an arbitrary input the run-time is
O(n log n). Due to this reason, quick sort is a candidate sorting algorithm in practice.
6. Quick sort can be made to run in O(n log n) for all inputs (i.e. worst case time: O(n log n)) if me-
dian element is chosen as a pivot at each iteration and if median can be found in O(n). I.e., T (n) =
2T (n/2) + O(n) + O(n). The first O(n) is for finding the median in linear time and the second O(n) is for
the pivot subroutine. Further, since median is the pivot, each iteration of quick sort yields two sub problems
of equal size.

6 Heap Sort

We shall discuss yet another sorting algorithm using the data structure Heaps. A complete binary tree is
a binary tree in which each internal node has exactly two children and all leaves are at the same level. A
nearly complete binary tree with l levels is a complete binary tree till (l− 1) levels and at level l, the nodes
are filled from left to right. A nearly complete binary tree is also known as a Heap. An array representation
of heap fills elements from A[1] with root of the tree at A[1] and its left child at A[2] and the right child at
A[3]. In general, if the node is at A[i], then its left child is at A[2i] and the right child is at A[2i+ 1].

We define two special heaps, namely, Max-heap and Min-heap. A max-heap is a heap with the property that
for any node, the value at the node is at least the value of its children and for a min-heap the value of a
node is less than or equal to its children. We shall now describe an approach that will construct a max-heap
from a given array of n-elements.
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Top-down approach: In this approach, given an array of n-elements, we construct max-heap itera-

A: 1, 4, 2, 8, -1, 0

Iteration 1 : Iteration 2 :1
1

4

Max-Heap

Violation

4

1

Iteration 3 :

4

1 2 Iteration 4 :

4

1 2

8

Max-Heap

Violation

4

8 2

1

Max-Heap

Violation

8

4 2

1

Iteration 5 :

8

4 2

1 -1

Iteration 6 :

8

4 2

1 -1 0

No Max-Heap Violation

No Max-Heap Violation

No Max-Heap Violation

No Max-Heap Violation

Figure 2: Top Down Approach: Construction of Max-Heap

A: 1, 4, 2, 8, -1, 0

1

4 2

8 -1 0

Max-Heap

Violation

1

8 2

4 -1 0

8

1 2

4 -1 0

Max-Heap

Violation

Max-Heap

Violation 4 2

1 -1 0

8

Figure 3: Bottom up Approach: Construction of Max-Heap

tively. Clearly A[1] is a max-heap. We add A[2] to the already constructed max-heap and set right the
heap if there is a max-heap violation. In general, during ith iteration, A[i] is added to the max-heap already
constructed on A[1..i − 1]. While adding A[i] to the max-heap, we check whether the max-heap property
is violated or not. If it violates, then A[i] is swapped with its parent and if any further violation due to
swapping, then its parent is swapped with its grand parent and so on. i.e., the new element inserted moves
up the tree till it finds the right position and in the worst case it becomes the root. An illustration is given
in Figure 2.

Bottom-up approach: In bottom-up approach, the given array itself is seen as a heap and in bottom-up
fashion, the heap is converted into a max-heap. That is, check for the max-heap violation is done from the
last level i to the root (level 1). An illustration is given in Figure 3.
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Pseudocode: Heap-Sort(A) Source: CLRS Bottom-up Construction

begin
1. Build-Max-Heap(A)
2. for i = A.length down to 2
3. Swap(A[1], A[i])
4. A.heapsize = A.heapsize -1
5. Max-Heapify(A, 1)
end

Build-Max-Heap(A)

begin
1. A.heapsize = A.length
2. for i = bA.length/2c down to 1
3. Max-Heapify(A, i)
end

Max-Heapify(A, i)

begin
1. l = Left(i)
2. r = Right(i)
3. if l ≤ A.heapsize and A[l] > A[i]
4. largest = l
5. else largest = i
6. if r ≤ A.heapsize and A[r] > A[largest]
7. largest = r
8. if largest 6= i
9. Swap(A[i], A[largest])
10. Max-Heapify(A, largest)
end

Run-time Analysis: Top-down Approach A trivial analysis tells us the cost for constructing a max-heap
is n×O(h), where, h is the height of a heap. We shall now analyze the height of a heap on n nodes. Since it
is complete upto height h− 1 and we know that there are at least one node and at most 2h nodes in level h,
the lower bound for the number of nodes n in a tree is n ≥ 20 + 21 + . . .+ 2h−1 + 1 = 2h− 1 + 1. Therefore,
n ≥ 2h, h = O(log n).
Similarly, the upper bound is n ≤ 20 + 21 + . . .+ 2h−1 + 2h = 2h+1 − 1. h ≥ log n+1

2 , h = Ω(log n).
Thus, the cost for constructing a max-heap in bottom-up approach is O(nh) = O(n log n).

Run-time Analysis: Bottom-up Approach There are dn2 e elements at the last level and all are trivially
max-heaps, so there is no cost at each node at this level. At last but one level, there are dn4 e nodes and in
the worst case at each node, we need 2 comparisons to set right the max-heap property. At last but second
level, there are dn8 e nodes and in the worst case at each node we need 4 comparisons to set right the max-
heap property. i.e., in the worst case, 2 comparisons for the first call to max-heapify(), and max-heapify()
will be recursively called one more time for which we need additional 2 comparisons. At last but i level,
there are d n

2i+1 e nodes and in the worst case at each node we need O(i) comparisons to set right max-heap
property. There will be i calls to max-heapify and each call incurs 2 comparisons. Therefore, the overall

cost is

O(logn)∑
i=0

d n

2i+1
e ·O(i).
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= O(

logn∑
i=0

d n

2i+1
e · i).

= O(

logn∑
i=0

d n
2i
e · i).

= O(n ·
logn∑
i=0

i

2i
).

Note that

logn∑
i=0

i

2i
is at most 2. Therefore, the total cost for build-max-heap() in bottom-up fashion is O(n).

Note: It is important to highlight that the leaves in any heap are present in locations A[bn2 c+1 . . n] and due
to this reason, elements in A[bn2 c+ 1 . . n] are trivial max-heaps. Further, the for loop in build-max-heap()
is run from A[bn2 c . . 1].

Origin: Heap sort was invented by J. W. J. Williams in 1964. This was also the birth of the heap,
presented already by Williams as a useful data structure in its own right [10].

Application: Heap Sort- To get a sorting sequence on the given input array, follow the steps: (i) Con-
struct a max-heap (ii) Extract root (the maximum element) and place it in A[n]. (iii) Place A[n− 1] at the
root. (iv) Call max-heapify with respect to the root. Repeat the above steps till A[2]. Cost for Step (iv) in
the worst case is O(h), therefore, the run-time of heap sort is O(n log n).

Aliter: One can also obtain the cost of step (iv) [max-heapify subroutine] using the following recurrence.
Note that when max-heapify() is called with respect to the root with array size being n, based on the value
of left child/right child, the next recursive call on max-heapify() will be to the left subtree of the root/right
subtree of the root. If the original tree is balanced, then the size of subtree in either case is n

2 . If the original
tree in which max-heapify was called is unbalanced, i.e., the last level of the tree is half-full, then the left
subtree has at most 2n

3 nodes and the right subtree has n
3 nodes. Therefore, in the worst case, the size of

the recursive sub-problem for max-heapify() is at most 2n
3 . If T (n) is the cost of max-heapify() on n-node

heap, then T (n) = T ( 2n
3 ) + 2. The constant ’2’ in the recurrence is for 2 comparisons done at each level.

Therefore, the cost of max-heapify() (use master theorem) is T (n) = O(log n).

Overview: In this article, we have discussed six different sorting algorithms with a trace, a proof of
correctness, and the run-time analysis. The worst case analysis of bubble, selection, insertion, and quick sort
reveals that, for any input the run-time is O(n2) and for heap and merge sort, it is O(n log n) in worst case.
It is now natural to ask; are there sorting algorithms for which the run-time is o(n log n). For example, does
there exist a sorting algorithm with run-time O(n log log n) or O(n). In an attempt to answer this question,
we shall shift our focus and analyze the inherent complexity of the problem. i.e.,

• What would be the least number of comparisons required by any sorting algorithm in worst case?

7 Lower Bound Analysis

Assuming there are ten algorithms for a given problem (say sorting), to answer the above question, com-
pute the worst case time of each algorithm and take the minimum. However, in general, we do not know
how many algorithms exist for a problem. Therefore, one should analyze the inherent complexity of the
problem without bringing any algorithm into the picture and such analysis are known as lower bound anal-
ysis in the literature. To begin with, we shall discuss the lower bound analysis of Problem:1 search and
Problem:2 search in a sorted array. Subsequently, we present a lower bound analysis for Problem:3

sorting problem.
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Claim: Input: Arbitrary Array A, an element x. Question: Is x ∈ A. Any algorithm for sequential
search in worst case incurs Ω(n), n: the size of the input array A.
Proof: To correctly say that the element x to be searched is in A or not; for any algorithm, x must be
compared with every A[i], 1 ≤ i ≤ n at some iteration of the algorithm. Since the comparison is Ω(1) effort,
any algorithm for search in worst case incurs n ·Ω(1) = Ω(n). The comparison task can be seen as a decision
tree that appears like a star wherein ith leaf represents the computation A[i] == x.

Remarks:
1. Linear search is an example algorithm for search in which x is searched in A in linear fashion.
2. One can also pick n distinct random elements from A and search whether x is present in A or not.

Claim: Input: Sorted Array A, an element x. Question: Is x ∈ A. Any algorithm for search in a
sorted array in the worst case incurs Ω(log n), n: the size of the input array A.

Proof: Consider a binary tree in which each node corresponds to a comparison done between x and A[i] for
some i. We shall view the binary tree as follows; root node represents the comparison between x and A[i] for
some i. Based on the comparison, if x < A[i], then the next level search is done on A[1..(i − 1)], otherwise
search is done on A[(i+1)..n]. We naturally get a binary tree modelling the computations performed at each
level. That is the decision tree looks like a binary tree. In general, the structure of the decision tree need
not be a binary tree, could be any k-ary tree. Any algorithm compares x with arbitrary k − 1 (k is a fixed
integer) elements of A, and based on the outcome of the search, it branch out to one of the subarrays. The
value of k is algorithm dependent. Therefore, the least number of comparisons required by any algorithm to
search in a sorted array is precisely the height of the k-ary tree which is O(logk n) = O(log n).

Remarks:
1. Binary search is an example algorithm for searching an element in a sorted array wherein; at level 1,
node 1 represents the comparison between x and A[n2 ], node 2 represents the comparison between x and
A[n4 ] and node 3 represents the comparison between x and A[ 3n4 ] and so on. Therefore, the recurrence is
T (n) = T (n/2) + 1, and its solution is O(log n). The decision tree is a binary tree.
2. Ternary search is another example algorithm where x is compared with A[n3 ] and A[ 2n3 ] at each itera-
tion on the recursive subproblem. Therefore, T (n) = T (n/3) + 2. Solving using master theorem, we get,
T (n) = O(log n). Here, the decision tree is ternary tree.

Claim: Any algorithm for sorting problem under comparison model incurs Ω(n log n) in worst case.

Proof: Note that our analysis is based on the assumption that the underlying algorithm arranges the
elements based on the primitive operation comparison between two elements. It may be possible to get
o(n log n) or O(n) for the sorting problem if the underlying model is different from comparison model. For
example, counting and radix sort arranges the elements in the input sequence without comparing a pair of
elements and hence these two algorithms do not fall into our discussion. Moreover, counting and radix sort
run in O(n) under some assumptions.

We shall now analyze the lower bound analysis of sorting using a decision tree. A decision tree is a bi-
nary tree where each node represents a comparison between a pair of elements (A[i], A[j]) for some i and
j. For example, a decision tree for the input size 3 is given in Figure 4. Note that (A[i], A[j]) must be
compared at some iteration of any sorting algorithm and the exact iteration number varies from algorithm
to algorithm. Decision tree precisely presents all possible comparisons that can happen in an array of n
elements. The exact sequence of comparisons depends on the input. Note that for the input < a1, . . . , an >
there are n! leaves as each of the permutations of < a1, . . . , an > appears as a leaf node. Based on the
nature of < a1, . . . , an >, any algorithm will try to explore one of the paths from the root to the leaf node
that contains the sorted sequence of < a1, . . . , an >. We are interested in what would be the least number
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Compare(a1,a2)

Compare(a2,a3) Compare(a1,a3)

a1 <= a2 a1 > a2

< a1, a2, a3 > Compare(a1,a3)

a2 <= a3 a2 > a3

< a2, a1, a3 > Compare(a2,a3)

a1 <= a3 a1 > a3

< a3, a1, a2 >

a1 <= a3 a1 > a3

< a1, a3, a2 >
< a3, a2, a1 >

a2 <= a3 a2 > a3

< a2, a3, a1 >

Figure 4: Decision Tree for Sorting three numbers, input: < a1, a2, a3 >

of comparisons in worst case taken by any input < a1, . . . , an > to reach the right leaf. It is now clear that
the number of comparisons required by any sorting algorithm for any input (in worst case) is precisely the
height of the decision tree or the length of the longest path from the root to a leaf node.

Clearly, the number of nodes in a decision tree for the input of size n is 2n! − 1, (n! − 1 internal nodes
and n! leaves). We know that at height h, there are 2h nodes. Since there are n! leaves, 2h ≥ n!. Further,
h ≥ log(n!). Note that (n

e )n ≤ n! ≤ nn.
h ≥ log(n!) ≥ log(n

e )n.
This implies that h = log nn − n log e. h ≥ n log n− 1.44n which is h = Ω(n log n).
Thus, our claim follows. Since our analysis is entirely depend on comparisons between a pair of elements,
this lower bound holds good for any sorting algorithm based on comparison model.
Remarks:

• Since heap sort and merge sort take O(n log n) in worst case and it matches with the lower bound,
these two algorithms are optimal sorting algorithms. Note that the optimality is with respect to the
number of comparisons.

• We also can get a lower bound for best case from the decision tree. Since the length of the shortest
path is n, any algorithm for best case input incurs Ω(n).
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