Indian Institute of Information Technology Design and Manufacturing,

. . I
A Kancheepuram, Chennai 600 127, India N Islzg;cgozn
An Autonomous Institute under MHRD, Govt of India ' Scrilg)e'p

1ITD & M
KANCHEEPURAM

http://www.iiitdm.ac.in

COM 209T Design and Analysis of Algorithms -Lecture Notes Dhanalakshmi S

Graph Algorithms

Objective: In this module, we shall introduce graphs which are a powerful model for modelling combi-
natorial problems in computing. We also discuss graph traversals, namely, Breadth First Search (BFS) and
Depth First Search (DFS) and their applications.

1 Preliminaries

Definition 1 (Graph) A graph G is a pair G = (V(QG), E(G)) consisting of a finite set V(G) # 0 and
a set E(G) of two-element subsets of V(G). The elements of V(G) are called vertices of G. An element
e ={a,b} of E(G) is called an edge of G with end vertices a and b.

Vertex set={a,b,c,d }
Edge set ={{a,c}, {b,c}, {c,d}, {b,d}}

Figure 1: An example for a simple graph

Note that, graph is a non-linear data structure. A graph is said to be simple if it has no multiple edges
between any two vertices and no self loops (an edge from a vertex to itself). Throughout this lecture, we
will look at only finite and simple graphs.

Definition 2 (Subgraph) Let G be a finite simple graph. A graph H is said to be a subgraph of G if
V(H) CV(G) and E(H) C E(G). The graph H is said to be an induced subgraph of G if V(H) C V(G)
and for every pair of vertices u and v, {u,v} € E(H) if and only if {u,v} € E(G).

d

Graph G Subgraph of G Induced Subgraph of G

Figure 2: A graph G, a sub graph of G on the vertex set {a,c,d, e, f} and an induced graph on the vertex
set {a,c,d,e, f}

Figure 3: An example for a connected graph

Definition 3 (Connected Graph) Two vertices u and v of a graph G are said to be connected if there
exists a path from u to v in G. A graph G is said to be connected if every pair of its vertices are connected.

Definition 4 (Disconnected Graph) A graph G which is not connected is said to be disconnected.

b Q.

Figure 4: An example for a disconnected graph. The graph has two connected components, one is a graph
induced on the vertex set {a, b, c} and the other is {d}

Definition 5 (Neighborhood of a vertex) The Neighborhood of a vertex v in a graph G is the set

N (u) consisting of all vertices u which are adjacent to v. For example, the neighborhood of the vertex ¢ in
Fig. 3. is N(c) = {a,b}.

Definition 6 (Acyclic Graph) A graph that contains no cycles is called acyclic graph.

Definition 7 (Tree) A connected acyclic graph is called a tree. It is a spanning tree of a graph G if it
spans G (that is, it includes every vertex of G) and is a sub-graph of G (every edge in the tree belongs to G).

e In a tree, we can find only one path for every pair of its vertices.

o Tree is a non-linear data structure.

Definition 8 (Bipartite Graph) A graph G is called a bigraph or bipartite graph if V can be parti-
tioned into two disjoint subsets V1 and Vo such that every line of G joins a point of Vi to a point of Vs.
(V1, V) is called a bipartition of G.

1.1 Breadth First Search(BFS) Algorithm

Graph G Tree T

Figure 5: An example for a graph and its corresponding spanning tree

Algorithm 1 BFS Spanning tree algorithm(G)
Input: A Graph G = (V, E)
Output: Spanning Tree T of a graph G
Step 1: Let ¢ = 0.
Step 2: Start with any vertex v in G. T initially contains v at level 0; i = ¢ + 1. Mark v as visited.
Step 3: Find the neighbors of v and add them in the next level (level 1) in 7. Mark them as visited.
Step 4: Find the unvisited neighbors for each vertex in level ¢ and add it in level ¢+ 1. Mark the explored
vertices.
Step 5: Increment ¢. Repeat step 4 until there are no neighbors to visit.

BFS Tree T

12

13

15 16

Figure 6: An example for the construction of BFS tree

Time complexity: O(n) effort is spent in initializing the boolean array to keep track of which node is
visited /unvisited. As part of BFS procedure, each edge is visited at most once, therefore, the total time is
O(n + m), where n — vertices and m — edges of a graph G.

E(G) denotes the edges in a graph G, E(T) denotes the edges in the BFS tree T of G. The set
E, = E(G)\E(T) denotes the set of non-tree edges i.e., the edges which are in the graph G but not in
the tree T'.

Definition 9 A non-tree (missing) edge, {u,v} € E(G)\E(T) is said to be a:

e Cross edge if u € L; and v € L; (i.e., both the vertices are in same level). Let E. denotes the set of all
cross edges in T.

e Slanting edge ifu € L; andv € Lj, j=1i+1or j =1i—1 (i.e., both the vertices are in adjacent levels).
Let Eg denotes the set of all cross edges in T .

Remark: Note that, j cannot be greater than ¢ + 1 or less than ¢ — 1.

1.1.1 Applications of BFS

e Test for Connectedness:
Problem: Given a graph G, find whether the given graph is connected or not ?
Solution using BFS: Call BFS algorithm once, if | V(G) |=| V(T) |, then G is connected and if
| V(G) |#] V(T) |, then G is disconnected, where T is the BFS tree constructed in the first call to BFS
algorithm. i.e.; if number of calls to BFS is greater than one, then G is disconnected and the number
of calls to BFS gives the number of disconnected components.

e Test for cyclicity:
Problem 1: Given a connected graph G, find whether G contains a cycle or not?
Solution using BFS: Run BFS(G). If E,, = (), then G is acyclic. Otherwise G contains at least one
cycle.

Problem 2: Given a graph G, find whether G contains a cycle or not?
Solution using BFS: Run BFS for each connected component of G and check if E,, = @) for all such
components, if so, then G is acyclic. Otherwise G contains at least one cycle.

Problem 3: Given a graph G, find whether G is a tree or not?
Solution using BFS: Do test for connectedness and test for acyclicity. If G is connected and acyclic,
then G is a tree.

e Test for existence of Cjs:
Problem: Given a graph G, find whether G contains a C3 or not?
Solution using BFS: Run BFS(G) and collect all non-tree edges, E,,. For all, e = {u,v} € E,, check
whether the shortest path between u and v in G = G\e is two (i.e., check for a common neighbor
in the same level of u or in the adjacent levels of u), if so, G contains a C5. This check can be done
in O(m) x O(n + m) time, as for every non-tree edge (O(m)), construction of BFS for shortest path
computation takes O(n + m) time.

Approach 2: For every edge {u,v} € E(G), check whether Ng(u) N Ng(v) # 0 or not. If it is empty,
then G does not contain a C3. Otherwise, G has at least one C5. Time complexity: In a adjacency
matrix of G, do Boolean AND for the two rows corresponding to the end vertices of a cross edge and
scan for the existence of 1 in that, this takes O(n) time and we do this for all edges in G, O(m). Thus,
this algorithm takes O(nm) time.

e Test for existence of odd cycles:

Problem: Given a graph G, find whether G contains an odd cycle, a cycle of length 2k + 1,k > 1, or
not?

Solution using BFS: The existence of cross edges in T' (FE. # () implies the existence of odd cycles
in G. Let e = {u, v} be an cross edge in T and let « be the common parent of v and v. It is clear that,
the length of P,, (Path from z to u in T') is equal to the length of P,,. Thus, P, and P,, forms an
odd cycle together with e. The converse of this statement: The existence of odd cycles in G implies
the existence of cross edges in T (E. #) is also true.

e Test for existence of Cjy:
Problem: Given a graph G, find whether G contains a Cy4 or not?
Solution using BFS: Run BFS(G) and let E, denote the set of non-tree edges. For each e =
{u,v} € E,, construct two sets A = Ng/(u)\Ng(v) and B = Ng/(v)\Ng(u), where G = G\e. Now,
for every element x in A, check whether it has a neighbor y in B or not. If it has a neighbor then the
set {u,z,y,v} form a Cy. Time complexity: Number of non-tree edges is O(m), number of elements
in A is O(n) and in B is O(n). Thus, this approach takes O(mn?) time.

e Existence of even cycles through slanting edges:

Problem: Given a graph G, find whether G contains an even cycle, a cycle of length 2k + 2,k > 1, or
not?

Solution using BFS: The existence of slanting edges in T' (Fs # () implies the existence of even
cycles in G. Let e = {u,v} be a slanting edge in T and let = be the common parent of v and v. It is
clear that, the length of P, (Path from x to u in T') is equal to the length of P, + 1 or the length
of P, (Path from z to w in T) is equal to the length of P, + 1. Thus, P, and P,, forms an even
cycle together with e. The converse of this statement if false. i.e., consider a complete graph on four
vertices, consider the BFS tree with respect to vertex 1, in the tree there is an even cycle using four
cross edges.

e Test for Bipartiteness:
Problem: Given a graph G, find whether G is a bipartite graph or not?
Trivial Algorithm: Partition the vertex set V of G into two sets with different combinations and check
for the bipartiteness for each combination. Time complexity of this algorithm = n+nCs+...+nC,, o =
o2m).
Algorithm using BF'S:

— Mark the non-tree (missing) edges using dotted lines in the BFS tree T.
— Decompose E,, into F. and Fj.

— We know that, a graph is bipartite if and only if it is odd cycle free. By using the fact in test for
odd cycles: we can conclude that, if E. = (), then G is bipartite.

e Test for 2-colorability:
Problem: Given a graph G, check whether can we color the vertices of a graph G using two colors
such that no two adjacent vertices have the same color.
Solution using BF'S: Testing whether a graph is 2-colorable or not is equivalent to testing whether
a graph is bipartite or not.

e Shortest path computation:
Problem: Given a graph G and two vertices v and v, find the shortest path between u and v.
Solution using BFS: Run BFS(G) by having starting vertex as u. Since, T=BFS(G) is a tree, there
exist only one path from u to v and that path is the shortest path from u to v. This takes O(n + m)
time.

e All pairs Shortest path problem:
Problem: Given a graph G, find the shortest path between all pairs of vertices in G.
Solution using BF'S: For every vertex v € V(G), Run BFS(G) by having starting vertex as v. For
each BFS tree T, print the path from v to z for all in T. This takes O(n(n + m)) time.

Remarks:

e If |[E.| = () then G is bipartite.

e If |E.| # () then G is not bipartite.
e If |E.| =0 and |E;s| = () then the given graph G is a tree (bipartite).

e The example given below has an even cycle, however, E, = ().

1.2 Depth First Search(DFS) Algorithm

Algorithm 2 DFS Spanning tree algorithm(G)
Input: A Graph G = (V, E)
Output: Spanning Tree T of a graph G
Step 1: Let ¢ = 0.
Step 2: Start with any vertex v in G. Add v in level ¢ of T'; i =i + 1. Mark v as visited.
Step 3: Find a neighbor of v and add it in the next level of the tree T.
Step 4: For a vertex v in level 7, find a unvisited neighbor w and add w in level i + 1. Mark w as visited.
Step 5: When there is no w to visit, backtrack to v and explore the other neighbors recursively.

Graph G DFS Tree T

11

Figure 7: An example for the construction of DFS

Time complexity: Since each edge is visited at most twice: one during DFS call and the other visit is
during back tracking, the effort is O(n + m), where n represents the number of vertices and m represents
the number of edges of a graph G.

Note: Here the non-tree edges are called as back edges.

1.2.1 Applications of DFS

e Test for Connectedness:
Problem: Given a graph G, find whether the given graph is connected or not ?
Solution using DFS: Call DFS algorithm once, if | V(G) |=| V(T) |, then G is connected and if
| V(G) |#| V(T) |, then G is disconnected, where T is the DFS tree constructed in the first call for
DFS algorithm. i.e., if number of calls to DFS is greater than one, then G is disconnected.

e Test for cyclicity:
Problem 1: Given a connected graph G, find whether G contains a cycle or not?
Solution using DFS: Run DFS(G). If there is no back edge, then G is acyclic. Otherwise G contains
at least one cycle.

Problem 2: Given a graph G, find whether G contains a cycle or not?

Solution using DFS: Run DFS for each connected component of G and check if the number of back
edges is equal to zero for all such components, if so, then G is acyclic. Otherwise G contains at least
one cycle.

Problem 3: Given a graph G, find whether G is a tree or not?
Solution using DF'S: Do test for connectedness and test for acyclicity. If G is connected and acyclic,
then G is a tree.

e Determine the number of connected components:
Problem: Given a graph G, find the number of connected components in G.
Solution using DFS: Run DFS until V(G) = V(T). The number of calls to DFS determines the
number of connected components in G.

Definition 10 (Articulation Point/Critical node) Let G be a connected graph. A vertex v € V(G) is
said to be an articulation point if the removal of the vertex v from G results in a disconnected graph.

Definition 11 (Bridge/Critical link) Let G be a connected graph. A edge e € E(G) is said to be a
bridge if removal of the edge e from G results in a disconnected graph.

Figure 8: Articulation Points: vertex 1, vertex 4, vertex 7, vertex 9 and vertex 11; Bridges: {14}, {7,8},
{9,10}, {11,12} and {11,13}.
Note:

- If a network does not contain a bridge and an articulation point then it is considered a good network
as it can tolerate single node or single edge failure.

- If G is 2-connected then it can tolerate single node failures but not 2-node failures

- It is not necessary that existence of articulation point implies the existence of bridges.

- In any bridge, atleast one end-point is an articulation point.

- The upper bound for the number of articulation points in a connected graph G with n vertices is n — 2.
- The upper bound for the number of bridges in a connected graph G with n vertices is n — 1.

e Test for existence of an articulation point:
Problem: Given a graph G, find the articulation points in G.
Approach 1: For every vertex v € V(G), run DFS(G' = G\{v}), if the number of connected
components is greater than one, then the vertex v is an articulation point. This approach takes
O(n(n+m)) = O(nm) time.

Approach 2: The vertex w in a DFS tree T is said to be an articulation point if there is no back edge
from the descendant vertices of w to the ancestor vertices of w. The root node of T is an articulation
point if degree of the root node in DFS tree is greater than or equal to two. This can be done using
the following algorithm:

Algorithm 3 To compute Articulation point
Input: DFS tree T of a Graph G = (V, E) and a vertex u.
Output: Whether the vertex u is an articulation point or not.
Step 1: Visit the vertices of T in post-order traversal and compute
L(u) = min{dfn(u), min{L(w)|w is a child of u}, min{dfn(w)|(u,w) is a back edge}}
Step 2: If u is a root in T with degree > 2 then w is an articulation point.
Step 3:If u is not a root in T then w is an articulation point iff has a child w such that L(w) > dfn(u)

Remark: What does for a vertex v, for all child w;, L(w;) > dfn(v) mean ? It means that, there
does not exist a back edge from any descendant of v to any ancestor of v. Moreover, to check whether
a vertex v is an articulation point or not, it is enough to check whether there exist a child for v whose
descendants do not have a back edge to any ancestor of v.

Time Complexity to list all APs: O(n+ m) [O(n + m) for DFS Tree + O(n) for post order
traversal + O(n) for checking whether it is A.P]

Example 1:

DFS Tree Vertex dfn

0N O bhWNR

11
12

P ©O© o0 ~NOO O~

o

L - Values for the tree T:

L(8) = min{6,00,00} =6
L(12) = min{10, 00,00} = 10
L(11) = min{9,10,5} = 5

L(10) = min{8,5,00} =5

L(9) = min{7,5,00} =5

L(7) = min{5,min{6,5},1} = 1
L(6) = min{4,1,00} = 1

L(5) = min{3,1,1} = 1

L(4) = min{2,1,00} = 1

L(3) = min{12, 00,00} = 12
L(2) = min{11, 00,00} = 11

L(1) = min{l,min{11,12,1},00} =1
By Algorithm 3, for the example given, articulation points are 1,7,11.

Query 1: v is an articulation point if there exist at least one child of v, say w, such that L(v) < L(w)
?

Counter example: In the example, given above, for the vertex 10, there exist a child 11 such that
L(11) = L(10) = 5, but 10 is not an articulation point.

Query 2: v is an articulation point if there exist at least one child of v, say w, such that dfn(v) > L(w)
?

Counter example: In the example, given above, for a vertex 9, there exist a child 10 such that
dfn(9) = 7> L(10) = 5, but 9 is not an articulation point.

e Test for the existence of a bridge:
Problem: Given a graph G, find the bridges in G.
Approach 1: For every edge e € F(G), run DFS(G' = G\e), if the number of connected compo-
nents is greater than one, then the edge e is a bridge. This approach takes O(m(n+m)) = O(m?) time.

Approach 2: The edge {u,v} in a DFS tree is said to be a bridge if there is no back edge from the
descendant vertices of v to u or to the ancestor vertices of u. This can be done using the following
algorithm: By Algorithm 4, for the example given, the bridges are {1,2}, {1,3}, {11,12}, {7.8}.

Algorithm 4 To compute Bridges

Input: DFS tree T of a Graph G=(V,E) and an edge (u,v).

Output: Whether the edge (u,v) is bridge or not.

Step 1: Visit T in post-order traversal and compute,

L(u) = min{dfn(u), min{L(w)|w,is a child ofu}, min{dfn(w)|(u,w)is a back edge}}
Step 2: (u,v) is a bridge if dfn(u) < dfn(v) and L(v) > dfn(u).

Query 1: the edge {u,v} is a bridge if (i) {u,v} is a tree edge (ii) dfn(u) < dfn(v) and (iii)
L(v) =dfn(v) ?

10

Since the above condition respects the definition of bridge, and in particular, condition (iii) ensures
there is no back edge from any descendant of v to u or the ancestor of u, the above check indeed works.

Query 2: the edge {u,v} is a bridge if there exist a child w for v such that L(w) > L(v) ?
Counter example: Consider the Example 1: Take an edge {10, 11}, there exist a child 12 for 11 such
that L(12) =10 > L(11) = 5, but {10,11} is not a bridge.

Definition 12 (Biconnected Components) A mazimal connected components of a graph G without any
articulation point.

Graph G Biconnected components of G
1 4 1
8
2 5 2
9
4
7 4
5 6

e Determine the biconnected components:
Problem: Given a graph G, find all the biconnected components of the graph G.

Algorithm 5 Biconnected Components
Input: Graph G = (V, E)
Output: Biconnected Components.
Step 1: Identify any one articulation point.
Step 2: Remove that point from the graph. We will get collection of connected graphs G’
Step 3: Add back the articulation point to all the connected components.
Step 4: The connected components which has no articulation point are biconnected. For the components
which has articulation point, repeat the above process.

1.3 Strongly Connected Components in a directed graph G

A strongly connected component C' in a directed graph G has the property that for all u, v in C, there exists
u — v directed path and v — u directed path.

Problem: Given a directed graph G, find all of its strongly connected components.

11

Algorithm 6 Strongly Connected Components (SCC)
Input: Directed Graph G
Output: Strongly Connected Components of G.
Step 1: Run DFS(G) and compute the finish time for all vertices.
Step 2: Find G and sort the vertex set of G in decreasing order based on its finish time.
Step 3: Run DFS(GT) from the vertex which has maximum finish time. Do this step repeatedly until
all the vertices in GT are visited at least once (this gives you the collection of SCC).
Step 4: Each forest in DFS(GT) is a SCC.

. 4 - 8 1 g (1,20)
—>@ >
(2,5)
2 6 9
5
7 (11,18)
(3.4)
3
10 12,17
Graph G (12.17)
(8,9)
DFS(G) % (13,16)
The second co-ordinate of the
red color ordered pair denotes
the finish time of the corresponding 10 (14,15)
vertex and the first co-ordinate
denotes the dfs number
1 4 7 8
€ <
))
2 6 9
5
3
10
Graph G"T
Step 1: Run DFS from the vertex 1, which has the high finish time. 1 ®
No further vertex to visit. Thus, {1} is a strongly connected component
4
Step 2: Run DFS from the vertex 4, which has the next high finish time. .
The graph induced on the vertex set {4,5,6} 6
forms a strongly connected component .
Step 3: Run DFS from the vertex 7, which has the next high finish time. 5
10
The graph induced on the vertex set {7,8,9,10}
forms a strongly connected component
9
8
Step 4: Run DFS from the vertex 2, which has the next high finish time. 2 ®
No further vertex to visit. Thus, {2} is a strongly connected component
12
Step 5: Run DFS from the vertex 3, which has the next high finish time. 3 .

No further vertex to visit. Thus, {3} is a strongly connected component

1.4 Topological Sorting

Problem: How long does it take to complete a B.Tech programme 7

Description: Every B.Tech student in ITITD&M has to complete the set of 55 courses in the curriculum to
get their degree certificate. If you are given a chance to do as many courses as possible in a semester with
a constraint: some courses has a pre-requisite course, which has to be completed in the previous semesters,
what is the minimum number of semesters to complete all 55 courses ? (The question maximum is invalid
because one can do one course in a semester to reach the maximum number)

Strategy 1: Construct a pre-requisite graph on 55 courses. i.e., construct a graph with 55 vertices (each
vertex corresponds to a course) and an directed edge (u,v) € E(G) if the course u is the pre-requisite for
the course v. Now, remove the vertices of in-degree zero and add the corresponding courses in semester 1.
Repeat this process until you have visited all the vertices in the graph G, to get the minimum number of
semesters. An example is illustrated below:

1

3 3
4
8 8 ®s
5
Vertices with in-degree zero = {1} Vertices with in-degree zero = {2,3}
Semester 1 = {1} Semester 2 = {2,3} 6
7

Vertices with in-degree zero = {8,4}
Semester 3 = {8,4}
A pre-requisite graph G
for eight courses

5
6
Vertices with in-degree zero = {6} (X

6 Semester 4 = {5} Semester 5 = {6}
7 Vertices with in-degree zero = {7}

Semester 6 = {7}

Vertices with in-degree zero = {5}

The minimum number of required semesters is 6

Strategy 2: Run DFS and compute the height for each forest in the DFS. Pick the maximum height. This
strategy fails because of the following counter example:

13

‘8 DFS(G)

7

A pre-requisite graph G
for eight courses

Figure 9: Course 6 has to be done before the course 5, which is a contradiction as course 5 is a pre-requisite
course for course 6

Acknowledgements: Lecture contents presented in this module and subsequent modules are based
on the following text books and most importantly, author has greatly learnt from lectures by algorithm
exponents affiliated to IIT Madras/IMSc; Prof C. Pandu Rangan, Prof N.S.Narayanaswamy, Prof Venkatesh
Raman, and Prof Anurag Mittal. Author sincerely acknowledges all of them. Special thanks to Teaching As-
sistants Mr.Renjith.P and Ms.Dhanalakshmi.S for their sincere and dedicated effort and making this scribe
possible. Author has benefited a lot by teaching this course to senior undergraduate students and junior
undergraduate students who have also contributed to this scribe in many ways. Author sincerely thank all
of them.

References:

1. E.Horowitz, S.Sahni, S.Rajasekaran, Fundamentals of Computer Algorithms, Galgotia Publications.
2. T.H. Cormen, C.E. Leiserson, R.L.Rivest, C.Stein, Introduction to Algorithms, PHI.

3. Sara Baase, A.V.Gelder, Computer Algorithms, Pearson.

14

