
Assignment 3 - Solutions

1. Consider a set S of C-programs. (i) Define three meaningful binary relations on S. (ii) Define
a relation which is not transitive.

R1={(a, b) | a and b have same asymptotic time complexity}
R2={(a, b) | a and b both are comparison based sorting}
R3={(a, b) | a and b both finds maximum element in the input}

R4={(a, b) | a and b have common functions}

2. Consider a set S of academic courses offered at IIITDM. (i) Define three meaningful binary
relations on S. (ii) Define a relation which is not transitive.

R1={(a, b) | a is a prerequisite for b}
R2={(a, b) | a and b have both lab and theory}
R3={(a, b) | a and b are courses in same semester}

R4={(a, b) | a and b are related iff they are from different departments}

3. Consider a set S of coins with different denominations. (i) Define three meaningful binary
relations on S. (ii) Define a relation which is not transitive.

R1={(a, b) | a + b = 100}
R2={(a, b) | a mod b = 2}
R3 = {(a, b)|a ≤ b}

R4 = {(a, b)|a− b = 10}

4. On the set of natural numbers, define a binary relation which is not transitive.

R1 = {(a, b)|a + b ≤ 3}

5. Define a binary relation on empty set and list all properties that it satisfies.

A = ∅
A×A = ∅
R = ∅
R is reflexive, symmetric, transitive, equivalence, irreflexive, antisymmetric, asymmetric and
partial order.

6. Suppose, a binary relation R does not satisfy property P (reflexive, symmetric, etc.), then R
can be made to satisfy P by adding or deleting elements (each element in R is a pair). Mention
for each property, whether the operation is addition or deletion. Also, suppose R contains k
elements, what is the minimum and maximum number of elements to be added/deleted to
satisfy P . The underlying set has n elements.
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Reflexive: Only addition is possible.
Add: Minimum = n − k (all k elements are of the form (ai, ai), the remaining elements are
n− k) , Maximum = n (none of (ai, ai) exists).
Symmetric:
Minimum = 1 (element can be added / deleted assuming only one element (a, b) does not
have (b, a)), Maximum = k (none of (ai, bi) has (bi, ai) pair.)
Irreflexive:
Delete: Minimum=1 (only one pair (ai, ai) exists) , Maximum = k (all k elements are of the
form (ai, ai)).
Antisymmetric:
Delete: Minimum=1 (assume only one element has (a, b) and its symmetric pair (b, a)) ,
Maximum = k

2 (assume all the elements (ai, bi) has its symmetric pair (bi, ai))
Asymmetric:
Delete: Minimum= 1 (assume only one element has (a, b) and its symmetric pair (b, a) or
one (a, a) is present) , if k < n Maximum = k (all elements (ai, ai) are present) and if k > n,

Maximum = n + (k−n)
2

Transitive:
Add: Minimum=1 (one of (a, b) and (b, c) does not have (a, c)) , Maximum is attained when R
contains all elements from first row and first column, then |k| = 2n−1. To make R transitive
we need to add all the remaining elements. Maximum = n2 − (2n− 1) = n2 − k.

7. Given a set A of size n and a relation R ⊆ A×A, how many relations are (i) either reflexive
or symmetric (ii) reflexive or symmetric (iii) Neither reflexive nor symmetric.
n(R)= Number of reflexive binary relation = 2n

2−n

n(S)= Number of symmetric binary relation=2(n
2+n)/2

n(R ∩ S)=2(n
2−n)/2

(i) either reflexive or symmetric= n(R)+n(S)−2×n(R∩S) =2n
2−n+2(n

2+n)/2−2×2(n
2−n)/2

=2n
2−n + 2(n

2+n)/2 − 2(n
2−n+2)/2

(ii)reflexive or symmetric=n(R) + n(S)− n(R ∩ S)
=2n

2−n + 2(n
2+n)/2 − 2(n

2−n)/2

= 2n
2−n + 2(n

2+n)/2 − 2(n
2−n)/2

(iii) Neither reflexive nor symmetric= 2n
2

-reflexive or symmetric.
2n

2 − (2n
2−n + 2(n

2+n)/2 − 2(n
2−n)/2)

8. Given an integer k, how many reflexive binary relations are there containing exactly k ele-
ments. Assume, the set on which the relation is defined has n elements.
case i: k < n, no reflexive relation is possible
case ii: k = n, Only one reflexive relation is possible
case iii:k > n, among n2 elements, n diagonal elements should be present and from the re-
maining n2 − n elements k − n elements can be chosen.
n2 − nCk−n

reflexive binary relations are possible.

9. Given an integer k, how many antisymmetric binary relations are there containing exactly k
elements. Assume, the set on which the relation is defined has n elements.
All k elements can be choosen from the diagonal or it can be chosen from n2 − n or some
from diagonal and remaining from n2 − n. For n2 − n elements, there are two possibilities,
either (a, b) or (b, a) can be present.
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for k ≤ n,
number of antisymmetric binary relations=

∑k
i=0 nCi × ((n2 − n)/2)Ck−i

× 2k−i

for k > n,
number of antisymmetric binary relations=

∑n
i=0 nCi × ((n2 − n)/2)Ck−i

× 2k−i

for k = 0, number of antisymmetric binary relations=1

10. Mention the smallest set A and the smallest relation R defined on A such that R does not
satisfy any of the properties.
A = {1, 2, 3}
R = {(1, 1), (1, 2), (2, 1), (1, 3)}

11. Write the definition of rational number, irrational number and real number in FOL.
Rational
R is a rational number↔ ∃p∃q[p, q ∈ I ∧ q 6= 0 ∧R = p

q ]
Irrational
R is a irrational number↔ ∀p∀q[p, q ∈ I ∧ q 6= 0 ∧R 6= p

q ]
Real
R is a real number↔ ∃p∃q[p, q ∈ I ∧ q 6= 0 ∧R = p

q ]⊕ ∀p∀q[p, q ∈ I ∧ q 6= 0 ∧ (R 6= p
q )]

12. Prove using the principle of mathematical induction the number of antisymmetric binary
relations on a set of size n.
Number of antisymmetric relations(say x)=2n.3n(n−1)/2

By induction on n:
Base case: n = 0, A = ∅, R = ∅, x = 1
n = 1, A = {1}, R1 = {(1, 1)}, R2 = ∅
Induction Hypothesis: Assume that the number of antisymmetric relations on a set of size k
is 2k.3k(k−1)/2 where k≥1
Induction Step:
we have to prove that antisymmetric relation on set of size (k + 1) is 2(k+1).3(k+1)((k+1)−1)/2.
Antisymmetric relation on set of size (k+1)=Antisymmetric relation on set of size k + Newly
created antisymmetric relation because of adding (k + 1).
Antisymmetric relation on set of size k = 2k.3k(k−1)/2 (By Induction Hypothesis).
Antisymmetric relation because of adding (k+1)= Newly added pairs, for example, (1, k+1)
or (k + 1, 1) or none of the both are present. This is true for (1, k + 1),(2, k + 1) and so on
upto (k, k + 1). The pair (k + 1, k + 1) may or may not be present.
Each of terms newly added because of k + 1 has three choices either include one element or
other one or not both. (k + 1, k + 1) has two choices.
Antisymmetric relation because of adding (k + 1)=3k · 2.
Antisymmetric relation on set of size (k + 1)=2k.3k(k−1)/2.3k.2
=2(k+1).3(k+1)((k+1)−1)/2

=2(k+1).3(k+1)(k)/2

13. Prove using MI: x0 = 1.
Base case: x = 1, 10 = 1.
11−1 = 1/1 = 1 is true.
Induction Hypothesis: Assume k0 = 1 is true for k ≥ 1.
Induction step: To prove for (k + 1)
(k + 1)0 = 1(by binomial expansion)
(k + 1)0 = 0!/(0!0!) · k0 · 10 (k0 = 1 by hypothesis and 10 = 1 by base case)
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(k + 1)0 = 1.
Hence Proved.
For Negative Integers, Mathematical Induction cannot be applied.
Justification:
Set of I+ is a well ordered set. There exists a least element which is the base case for M.I.
But a Set of I− is not well ordered since it has no least element. Hence there does not exist
a base case to apply M.I.
If we redefine the notion ’successor of an element’, then MI can be applied on I− as well.
Base: k = −1, Hypothesis: Assume k0 = 1, for k ≤ −1. Induction step: The successor of k
is now k − 1, not k + 1. (k − 1)0 = 0!/(0!0!) · k0 · (−1)0 (k0 = 1 by hypothesis and (−1)0 = 1
by base case)

(k + 1)0 = 1.
Hence Proved.

Method 2:
Base case: x = 1, 10 = 11−1 = 1

1 = 1 =⇒ 1 = 1.
Induction Hypothesis: Assume n0 is true for n ≥ 1
n0 = n1−1 = n1 × n−1 = n1

n1 = n
n = 1 =⇒ n = n

Induction Step: prove (n + 1)0 = 1
from hypothesis and base case,
1 = 1 —>A
n = n —>B
A+B =⇒ n + 1 = n + 1
n+1
n+1 = 1

(n + 1)1−1 = 1
(n + 1)0 = 1
∴ x0 = 1

Method 3:
Let ’n’ be any other number other than ’0’
we know that, na · nb = na+b

nx · n0 = nx+0 = nx −−− >A
nx · 1 = nx(Any number multiplied with one is equal to the same number) −−− >B
we know that a = b and c = b =⇒ a = c
from A and B: a = nx · n0, b = nx and c = nx · 1
nx · n0 = nx · 1
∴ n0 = 1

similarly for negative numbers,
we know that, (−n)a · (−n)b = (−n)a+b

(−n)x · (−n)0 = (−n)x+0 = (−n)x −−− >A
(−n)x·1 = (−n)x (Any number multiplied with one is equal to the same number) −−− >B
we know that a = b and c = b =⇒ a = c
from A and B: a = (−n)x · (−n)0, b = (−n)x and c = (−n)x · 1
(−n)x · (−n)0 = (−n)x cot 1
∴ (−n)0 = 1
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14. The set A consists of all reflexive binary relations and B consists of all antisymmetric binary
relations.Between the two, which set is larger. Justify.
Number of reflexive binary relations=2n

2−n

Number of antisymmetric binary relations=2n.3(n
2−n)/2

2n
2−n > 2n.3

(n2−n)
2

proof by M.I:
Base case:
n = 6
230 > 26 · 315
16777216>14348907 is true.

Induction Hypothesis: Assume 2k
2−k > 2k.3

(k2−k)
2 is true for k ≥ 6.

Induction step: To prove 2(k+1)2−(k+1) > 2(k+1).3
(k+1)2−(k+1)

2 .

=2(k+1).3
(k+1)2−(k+1)

2 .

=2k · 2 · 3
k2+2k+1−k−1

2

=2k · 2 · 3
k2+k

2

=2k · 2 · 3
k2−k

2
+k

=2k · 2 · 3
k2−k

2 · 3k

=2k · 3
k2−k

2 · 2 · 3k
by our hypothesis
< 2k

2−k · 2 · 3k
since 3k < 4k

2 replace 3k by 4k

2

< 2k
2−k · 2 · 4k2

= 2k
2−k · 22k

= 2k
2−k+2k

= 2k
2+k

hence it is proved.
Therefore,Number of reflexive binary relations is greater than Number of antisymmetric bi-
nary relations.
Note: proof of 3k < 4k

2 using M.I Base case: n = 3

33 < 43

2
27 < 32 is true
Induction Hypothesis: Assume 3k < 4k

2 is true for k ≥ 3.

Induction step 3(k+1) < 4(k+1)

2

=4(k+1)

2

=4(k)·41)
2

=4k

2 · 4
> 3k · 4
> 3k · 3
= 3(k+1)

3(k+1) < 4(k+1)

2

∴ 3k < 4k

2

15. Is it true that 5×5−1 chess board can be filled using L-shaped triominos. Prove your answer.
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For 5× 5− 1 chess board, Except shaded regions if any of unshaded region is left out then it
is not possible to place the triominos.

R

Consider the left out cell as R. Red shaded portion has only one possibility to place the
triomino. From the remaining cells, the smallest portion that can be filled completely by
using triomino is either 2× 3 or 3× 2. If we try to partition the remaining cells of chessboard
then either 1× 3 or 3× 1 is left out which cannot be filled using triomino.

16. Show that (n/e)n ≤ n! ≤ nn

claim(i): n! ≥ nn

en

we know that ex = 1 + x
1! + x2

2! + ... + xn

n! + x(n+1)

(n+1)! + ...

ex ≥ xn

n!
x = n
en ≥ nn

n!

n! ≥ nn

en

claim(ii):nn ≥n!
n× n× · · ·n× n ≥ n× n− 1× · · · 2× 1
clearly LHS ≥ RHS.
hence proved.

Method 2:

claim(i): n! ≥ nn

en

ex =
∑∞

k=0
1
k!x

k

Let x = n, en =
∑∞

k=0
1
k!n

k

Multiply both sides by n!,
n!en = n!

∑∞
k=0

1
k!n

k

taking nth and separating it in RHS,
n!en = nn + n!

∑∞
k=0,k 6=n

1
k!n

k

n!en ≥ nn

n! ≥ nn

en
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n! ≥ (ne )n

claim(ii):n! ≤ nn

Arithmetic Mean ≥ Geometric Mean
1+2+...+n

n ≥ n
√
n!

(n(n+1)
2n )n ≥ n!

( (n+1)
2 )n ≥ n!

n! ≤ (n + 1)n

Multiply n + 1 on both sides
n!× (n + 1) ≤ (n + 1)n × (n + 1)
(n + 1)! ≤ (n + 1)n+1

substitute n + 1 = k
k! ≤ kk

substitute k = n =⇒ n! ≤ nn

Method 3:(By MI)

claim(i): nn ≥ n!
Base case: n = 1, 1! ≤ 11, 1 ≤ 1 which is true.
Induction Hypothesis: Assume k! ≤ kk is true for k ≥ 1
Induction Step: To prove (k + 1)! ≤ (k + 1)k+1

we already know that k! ≤ kk by the induction hypothesis
also, for positive numbers, kk ≤ (k + 1)k

therefore, k! ≤ (k + 1)k

Multiply (k + 1) both sides of the inequality,
(k + 1)k! ≤ (k + 1)k(k + 1)
(k + 1)! ≤ (k + 1)k+1

∴ ∀n, n! ≤ nn

claim(ii): n! ≥ (ne )n

Base case: n = 1, 1
e ≤ 1 which is true.

Induction Hypothesis: assume k! ≥ (ke )k is true for k ≥ 1.

Induction Step: To prove (k+1
e )(k+1) ≤ (k + 1)!

(k + 1)! = (k + 1)k!
from the hypothesis, (k + 1)k! ≥ (k + 1)(ke )k

Multiply and divide by (k + 1)k in RHS

(k + 1)! ≥ (k + 1) kk

(k+1)k
(k+1)k

ek

dividing both sides by e,
( k
k+1)k(k+1

e )k+1 ≤ (k+1)!
e

By Properties of limits, e > (1 + 1
k )k

1
e < 1

(1+ 1
k
)k

1
e < kk

(k+1)k
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Since, we have shown that 1
e < kk

(k+1)k
and the

above inequality is true, will only imply that
(k+1

e )(k+1) ≤ (k + 1)! has to be true.

∴ (ne )n ≤ n!

17. Present a good lower bound and an upper bound for the number of transitive binary relations.
Any subset of the set of diagonal elements is an example of transitive relation and thus there
are at least 2n transitive relations.
lower bound:2n

Total number of relations minus non transitive relations gives the upper bound.
Irreflexive symmetric (except empty relation) is non transitive.
upper bound:2n

2 − 2(n
2−n)/2 + 1

18. Given Rupee 5 and 7 denominations, show that any positive integer x ≥ k, change for x can
be given using these two denominations, where k is the base value.
Base case: for x = 24, two Rs.5 and two Rs.7 are required to make Rs.24
Induction Hypothesis: Assume for x ≥ 24, there exists a change for x using denominations
Rs5 and Rs7.
Induction Step: we have to prove that it is possible to make up exactly a change for Rs.k + 1
using Rs.5 and Rs.7.
case (i): suppose there exists change for Rs.k using at least two Rs.7. Replacing two Rs.7
by three Rs.5 will yield a change of Rs.k + 1.
case (ii): suppose there exists a change for Rs.k using at least four Rs.5. Replacing four Rs.5
by three Rs.7 will yield change of Rs.k + 1.
Therefore, the claim follows.

19. For a ternary relation, how do you define reflexivity, symmetricity and transitivity. Present
a formal definition using FOL.
Reflexivity :∀x ∈ A(x, x, x) ∈ R
Symmetricity:∀x, y, z ∈ A((x, y, z) ∈ R→ (x, z, y) ∈ R∧(y, x, z) ∈ R∧(y, z, x) ∈ R∧(z, x, y) ∈
R ∧ (z, y, x) ∈ R)
Transitivity:∀x, y, z, w, v ∈ A((x, y, z) ∈ R ∧ (y, z, w) ∈ R ∧ (z, w, v) ∈ R↔ (x,w, v) ∈ R).

20. This is for you. Ask an interesting question based on the material covered on relations. Also,
present a solution to the question posed.

Count the number of ways to partition a set of n objects into k non-empty subsets.
Stirling Number of the Second Kind. The number of ways of partitioning a set of elements
into non-empty sets is also called as the Stirling set number.
Let s(n, k) denote the number of ways of partitioning a n-sized set into k non-empty subsets.
This can be counted using
s(n, k) = k · s(n− 1, k) + s(n− 1, k − 1)

when we add nth element to create k partitions, there are two possibilities:

(a) It is added as a single element set (singleton set) to existing (k−1) partitions on (n−1)
elements so that we get k partitions on n elements, i.e., s(n− 1, k − 1)

(b) It is added as an element to a set in k partitions on (n − 1) elements, i.e., there are k
possibilities and hence, k · s(n− 1, k)
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For example, The number of k = 2 partitions on {1, 2, 3} can be obtained as follows;
(a) Fixing ’3’ as nth element, the number of one sized partition on {1, 2} is one; {{1, 2}},
Therefore, the number of one sized partition on n−1 = 2 elements is s(n−1 = 2, k−1 = 1) = 1.
If nth element is included in a separate partition, then we get {{1, 2}, {3}}, thus we get,
s(n = 3, k = 2) = 1.
(b) The number of two sized partitions on two elements out of {1, 2, 3}; {{1}, {2}} (for ele-
ment ’3’), s(n− 1 = 2, k = 2) = 1
To obtain k = 2 partitions on {1, 2, 3}, we add the third element to each partition; {{1, 3}, {2}},
{{1}, {2, 3}}. Also, note that we do not need consider the argument by fixing the elements
’1’ and ’2’ as it is implicitly taken care in the above argument itself.

Therefore, s(n, k) = k · s(n− 1, k) + s(n− 1, k − 1)
Observation:
The above problem finds the number of ways to partition a set of n objects into exactly k
non-empty subsets.
Bell’s number computes the number of ways of partitioning a set of n objects into all possible
sized subsets. Thus, we can compute Bell’s number as a function of s(n, k).
Bn =

∑k=n
k=1 s(n, k).
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